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ANALYSIS AND DEVELOPMENT OF IMAGE STATISTICS
AND REDUNDANCY REMOVAL

CHAPTER I

INTRODUCTION AND BACKGROUND

Extracting features from aerial photographs has been an

important cartographic effort for many decades. Much tech-

nology has been introduced to improve and refine this process,

but the crucial and limiting factor has been the need for

trained human operators with the intelligence, experience and

skills to recognize and identify the many diverse (and some-

times unexpected) cartographically interesting objects that

appear in a typical aerial photograph.

It would appear that many of the functions performed by a

trained cartographic observer could and should be automated.

At the very least, a computer aided human system would increase

productivity and decrease the inevitable fatigue and thereby

improve both the detection and false alarm rate of routine pic-

ture examination.

The process of extracting important features from a

photograph at first glance, appears to be characterized with-

in the broad framework of the theory of pattern recognition.

Work on pattern recognition has been ongoing for about three

decades with some notable successes. These successes have been

evident in printed character recognition, biomedical applica-

tions such as cell anomaly identification, and to an

1
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extent, in remote sensing. The application of pattern recogni-

tion theories to cartographic feature extraction is, however,

very sparse indeed.

Much of the work on pattern recognition has been based

on either

(1) statistical decision theoretic methods

(2) template matching (matched filters)

(3) syntactical decriptions of geometric objects

The statistical approach is based on knowledge of a

priori probability characterization of the objects to be examin-

ed. This implies good statistical behavior of the

ensemble of pictures to be examined and the objects to be

characterized.

Template matching works quite well if again, there is a

priori information about precise shape, size and orientation of

objects to be identified.

Syntactical grammars constitute a relatively new, but

more abstract way of dealing with the problem by translating the

image into strings of predefined primitives and then performing

the recognition operation on the picture description language so

developed. Various approaches to the translation process has

been proposed including linear strings, tree representations,

webs and other data structures. These techniques have had some

measure of success in pictures which can be skeletonized to line

drawings or other forms of a similar nature. Notable are the

successes in chromosome analysis.
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It should be emphasized that all image analyses usually

require a considerable amount of preprocessing such as linear

transformations and enhancement techniques. Indeed, the vast

majority of research on images has been done in this area of

digital image processing which by itself cannot and does not

yield either feature extraction or recognition of objects.

For aerial cartographic analysis, which is the subject

of this report, it is unfortunate that at this point in its

development, very little of the classical pattern recognition

theories are immediately applicable. If we are to be success-

ful with developing algorithms which actually work on real

images, a good deal of ad hoc methods must be used. The reason

for this is that it is rare that cartographically interesting

objects can be assigned a priori statistical distributions such

as is needed in a decision theoretic approach. Templates are

not likely to be successful because even approximate shape for

* the same kind of object is too variable, let alone orientation

* variability. We are thus left to examining the basic nature

of the objects of interest. In aerial catography, the basic

nature can be dichotomized:

(1) Natural and gross man-made objects such as forests,
fields, water, city streets, etc. These objects
are properly characterized by the texture, reflec-
tivity and fine structure.

(2) Discrete man-made objects such as bridges, roads,
canals, airports, storage containers, specific in-
dustrial sites. These man-made objects have the
distinguishing feature of having unique geometries,
shape boundaries and fairly sharp contrast with
their environment.
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The natural and gross man-made objects probably will yield

some degree of computerized recognition by taking advantage of

the texture and fine structure. The techniques for doing so

are available and indeed, Dr. P. F. Chen and his colleagues at

the Engineer Topographic Laboratories have demonstrated a pre-

liminary algorithm which discriminates forest, field, urban

area, water or none of the above using sample statistics of

sections of images. The sample statistics include averages,

correlation and absolute value, all of which are very easy to

compute and the results are compared against an empirically

determined threshold. Geometry is not examined and the algo-

rithm works very well when only one of the four objects are in

the scanning scene. It remains to be determined how such

algorithms, which depend on averages of the gross image, work

when there is an overlap with other boundary objects.

In this report we are concerned principally with the

second of the categories of cartographically important objects,

namely the discrete man-made ones. This class of objects lend

themselves to enhancement; and the recognition of them is

enormously benefited by various types of digital image prepro-

cessing such as linear transforms, edge detectors, local con-

trast changes and the use of a priori knowledge of the geometri-

cal characteristics of objects in question. The main emphasis

in our work was to develop a set of working tools which could

thus be incorporated into a transportable algorithm that would

work on actual images. To illustrate the principles and to

develop a concrete example, we have placed most of our efforts



f on bridge-over water recognition. The objective was to have

the algorithm be effective regardless of the other objects in

the field, even those that superficially might resemble a

bridge. In order to do this we developed and refined a set

of digital preprocessing techniques such as edge detectors,

image smoothers, straight-line transforms (quantized Hough and

other variants), thresholding techniques and variations on the

medial axis transform. In addition, we built in the a priori

knowledge of bridge characteristics including the global en-

vironment. The actual process of bridge identification then

consists of applying the preprocessing operations in sequence

and completed with a decision if all tests are met. In a sense,

this procedure can be viewed as a syntactical approach when

the basic language primitives are the individual operations

(edge detection, Hough transform, thresholding, etc.).

While the main thrust of the specific end product of this

work has been in bridge detection, we have not been unaware of

applicability of our methods to other objects such as airport

runways, roads and industrial sites. We have made some inroads

to the recognition of these objects as well. In addition, we

have examined certain aspects of the coding of line drawings

since it was felt that many of the man-made objects can be

skeletonized to line drawings and that the coding process can

be helpful in their identification.

In the chapters that follow, we present a condensation of

7 the effort of the past year. The report is organized in a way

to allow the reader to examine separately the models used, the
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individual routines and algorithms, and their synthesis in

an actual application. Standard FORTRAN code is included

in the Appendix and a tape has already been provided.

I
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CHAPTER II

APPROACHES TO AUTOMATIC CARTOGRAPHIC
IMAGE CLASSIFICATION

Background

Classification of a cartographic image is used here to

mean the assignment of a class label to the image or a subimage.

The label would denote a standard cartographic feature--a bridge,

road, river, etc.--and in general would identify a set disjoint

from those corresponding to other labels. The image (or sub-

image--but henceforth all will be called images) is thus a

pattern and a number of pattern recognition techniques are poten-

tially applicable. The simplest approach is template matching,

which compares templates of prototypical cartographic objects

to the image being examined. The template that is closest (as

,! determined with a suitable metric) is declared the class of the

image. Template matching is computationally easy and fast; it

4 is, however, strongly dependent on the orientation and scale

of the image; the quality of the image can also affect the

match.

That sensitivity gave rise to the use of features that

jointly characterize the pattern and that exhibit less varia-

tion as the image departs from the prototype or is corrupted

by noise. Features are measurements made on the pattern and

7
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are chosen to be both easy to extract and effective in separat-

ing the classes. A set of n features defines an n-dimensional

feature space within which we want the patterns to be well

separated.

An image in analog form (e.g., a continuous-tone photo-

graph) must undergo several preprocessing operations before

it is in a form suitable for feature extraction. An overall

block diagram illustrating the major processes that are usually

implemented in a modern digital image processing system is

shown in Figure 2.1, and a general description of each of these

processes follows. The first process usually applied to an in-

put picture is that of digitization, in which this original

picture is converted into another two-dimensional representation

that is suitable for digital computer processing. Two examples

of such pre-processing are quantization (i.e., analog-to-digital

conversion) in both space and amplitude and down-sampling (i.e.,

one way of reducing the number of bits used in representing the

.! source). The second process is often that of edge detection

and thresholding, whereby the digitized image is examined for

large changes in intensity followed by a thresholding operation

that retains only those edges that are likely to be significant

in subsequent processing. Next is usually an image segmentation

process, in which certain characteristics (e.g., texture) are

utilized to subdivide the image into distinct nearly homogeneous

regions. These resulting regions could then be encoded (as des-

cribed below) to remove the redundant information within them,

while still maintaining their essential attributes. Feature
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extraction follows; typical features in cartographic images in-

clude straight lines, regularity or periodicity, aspect ratios,

and relative sizes. Finally, the features are used in a classi-

fier that may evaluate a linear or nonlinear function of the

features and compare it to a threshold or use the features

sequentially, stopping when a decision can be made. Many

classifier designs exist and tradeoffs between feature complex-

ity and classifier complexity are inevitable.

Each of the major processes that were briefly discussed

above (in reference to Figure 2.1 will be discussed in greater

detail in the subsequent sections of this report. However, it

is first important to remember what is the ultimate objective

of the system shown in Figure 2.1: to extract and correctly

identify particular objects that are of interest to the user,

given an input picture. With this in mind, it is necessary then

to analyze the list of objects (or targets) of interest to the

user and attempt to categorize them according to their obvious

features. Such an analysis is performed in the following

section.

Preliminary Target Classification

In this study several targets of high interest--bridges

and airports--have been identified for focused investigation.

Table 2.1 categorizes a wide range of cartographic targets in

terms of their origin, either natural or man-made. Since the

target identification process is facilitated by identifying

cues or component attributes, and since it is desired to make
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Table 2.1

High-Interest Target Set

Natural 
Man-Made

* Rivers and Streams 
isolated Buildings

0 Unpaved Roads and Trails 
4 Storage Tanks

* Rapids and Falls 
0 Quarry or Borrow Pit

0 Shoreline 
* Tunnel Entrance

* Large Rivers 
* Canals

* Lakes 
• Dual Highways

0 Forests 
* Primary Roads

* Scrub 
0 Secondary Roads

* Marsh and Swamp 
* Train-Tracks

• Transmission Line

0 Pipe Line

• Levee

• Dam

* Bridge

* Airport

* Orchard and Vineyard

6 Urban Area

Suburban Area

* Industrial Area

* Railroad Area

cemetery
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decisions that distinguish between different classes of targets,

it is desirable to use unique sets of attributes to aid in the

decision process, each target class being associated with several

attributes unique to its character. If, for example, the attri-

bute "long, thin, parallel strip" is a co-attribute of ten of

the high-interest targets, then it is of only minimal value

since it does not uniquely identify a particular member of the

set of targets. Of course, there are other objects and shapes

that may appear in aerial images that do not appear in the list

of 31 high-interest targets. These may be improperly identified

as one of the high-interest candidates if the attribute set is

sufficiently broad. The identification of similar characteris-

tics and elementary cues can serve to structure the problem and

to help eliminate the selection of those characteristics or

attributes that lend little to the decision process.

In this brief section the members of the high-interest

target set will be considered in terms of their similarities

and differences by classifying them into subsets. Generally

the classification of objects into natural and man-made is

done to identify those targets that exhibit smooth lines (man-

made) versus those that exhibit irregular lines (natural objects).

(Freeman makes note of this general characteristic in his review

article on computer processing of line drawings). A river will

exhibit, for example, a shoreline that randomly curves and

forks. On the other hand, a man-made canal will generally be

built with well known geometrical shapes and will have smooth

sides.
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One of the factors that precipitated this brief look at

the target classes was the inclusion of several very similar

road or road-like structures in the table. If these are indeed

to be distinguished from one another, then specific characteris-

tics or combinations of them that set them apart must be identi-

fied.

In the table, for example, there are seven candidates that

exhibit characteristics that are road-like:

* Unpaved Roads and Trails
* Dual Highways
• Primary Roads
Secondary Roads
Train Tracks

* Transmission Lines
• Pipe Lines

All appear from the air as smooth-sided ribbons of uni-

form luminance or texture; all exhibit parallel sides. Often

all of the seven are built using long straight segments. All

include intersections or forks that allow interconnections of

two or more of their numbers. If an edge-detection algorithm

is used to create a line drawing depicting these seven objects,

what is to distinguish them? Perhaps the specific dimensions

can be used in some cases, but tj clear distinction is obvious

based only on this parameter. In some cases other attributes

may be available to assist in separating the targets within a

class. In the case of road-like structures, paved roads may

be differentiated from transmission lines, pipelines, and rail-

Jroad rights of way based on the textured properties, both
within the parallel line structure and adjacent to it.
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In summary, all exhibit these characteristis:

* High Aspect Ratio (L/W)
" Limited Width
0 Uniform Width
* Smooth Curves or Straight-Sided. May

include sharp angles or intersects
* Intersected by other road-like structure
* Not Isolated. Usually continues off image
* Constrasting Surface with respect to
surroundings

and these characteristics do not appear in any of the other

targets (with the exception of airports and urban and suburban

areas that will be classified here as "complex" targets, as

will be defined later). This suggests that, at least in the

case of road and road-like structures, a multi-tiered decision

tree could be applied to structure the identification problem.

Figure 2.2 shows a portion of the decision tree. Only the

branches associated with the road-like geometry have been fully

traced in the Figure. At the upper level are all target geo-

metries. Envisioned at the next subsequent decision level are

several algorithms that test the candidate image for membership

in general classes that include characteristics like ribbon

pattern (parallel, equally spaced lines of extended length),

isolated building structure (relatively small, smooth-sided

polygon of uniform luminance or uniform texture), water target

(uniform luminance, constrasting with surroundings, relatively

large surface area), and so on. (The example characteristics

proposed here are only for illustrative purposes. As the tar-
I

jI gets are each studied in greater detail the specific attribute

necessary to perform the decision process will be carefully

developed.) At the next level of decision-making in the
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All Targets

Road-Like Isolated Area Water Targ

(Ribbon Structures) Building Targets
Structures

Isolated Storage

Buildings Tanks

Paved Roads Unpaved Areas
(Uniform (Textured

Luminance) or Low
Reflectance, Dull)

Dual Primary Secondary
Highways Roads Roads
(Multiple (Wide) (Narrow)
Parallel

Ribbons)

Vegetation Railroad Unpave Roads and

Cleared Regions Tracks (Low Reflectance, Dull
(Uniformly Textured ("Picket
Ribbon) PFence" Pattern

Along Ribbon)

Pipeline Transmission Lines Unpaved Trail
(Towers Periodically Road (Narrow)

Dot Ribbon) (Wide)

Figure 2.2 Decision-Tree Approach to Target Identification
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decision-tree-branch representing the ribbon structure, the tex-

ture may be tested to determine if the candidate is of uniform

luminance (paved roads), or if it is dull, or of low reflectance

or textured (pipelines, transmission lines, unpaved roads and

trails). At the next level the structure may be classified

further depending upon the specific structure of the logic tree.

In the case of the branch depicting roads, the key parameter

that separates dual highways, primary, and secondary roads is

the width and number of parallel ribbons that make up the image.

The decision tree described in Figure 2.2 invokes the

notion of a sequential logic process. That is to say, the lower

level tests and decisions in the tree are carried out only as

necessary as the branches and branch points of the tree are

traced out to a tip of the tree. Such a process could be imple-

mented in a modular format using software modules to carry out

each of the decision-related tests. These modules would be

called upon to perform their specific testing operations on an

as-required basis by an executive function that would react to

the current position in the logic tree. Such a concept would

be more efficient than one that would be designed to carry out

all of the test operations in parallel. In the latter case the

system would simultaneously perform all of the operations in-

dicated in the examples in the logic tree irrespective of the

results of other tests that may be performed. In such a

decision structure the results of each of the tests could be

placed in a feature vector much like those indicated in Table

2.2. In the Table a number of example target characteristics
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are listed across the top. They are not necessarily the most

practicable set for cartographic purposes. Each of the target

candidates is listed along the side of the matrix. When a tar-

get exhibits a particular attribute a "one" is entered in that

attribute's position in the vector, and when the target does

not exhibit the attribute, a "zero" is entered in the attribute's

position. The Table is minimally constructed (i.e., a minimum

number of attributes have been defined) when all of the target

candidates exhibit unique decision vectors. When the decision

table is completely constructed then tests of candidate targets

can be made, and the identification process reduces to one of

matching the candidate target's decision vector with those

entered in the Table. As additional attributes are identified

and made available that result in unique decision vectors, the

probability of a correct decision should increase since more

information is being used in making the final identification

decision.

One exercise that was carried out during consideration of

the entire suggested target set of 31 candidates was a grouping

14 along the lines of eight major categories. These major catego-

ries could lend themselves to the logic tree format discussed

here. Within each major grouping a second-level decision would

then be applied to further separate the target candidates. Al-

though the specific characteristics necessary to carry this

process to completion are forthcoming, the process is a natural

extension of that described earlier.
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The seven major target categories and their members are

I. Road and Road-Like (Ribbon)

0 Dual Highways
* Primary Roads
0 Secondary Roads
0 Railroad Tracks
* Transmission Lines
0 Pipelines
* Trails
0 Unpaved Roads

II. Simple Large Scale "Area" Targets (Irregular)

* Cemetery
* Orchards and Vineyards
* Quarry or Borrow Pit
* Marsh and Swamp

* •Scrub
* Forests

III. Small "Area" Targets (Regular)

0 Isolated Buildings
. Storage Tanks

IV. Complex (Aggregate) Targets--Large Scale

0 Airport
* Urban Area

li Suburban Area
* Industrial Area
• Railroad (Switchyard) area

V. Water-Bearing

* Rivers0 Large Rivers

* Streams
* Lakes
* Canals

VI. Appurtenances of Water-Bearing Bodies
(cued by bodies of water)

* Levees
* Dams
* Bridges (road or railroad may also cue)
* Shoreline
* Rapids and falls

VII. Miscellaneous Category

* Tunnel Entrances
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The discussion above illustrates the interaction that must

occur between an intuitive approach (i.e., one that would model

the decision procedure after that followed by a human photo

interpreter) and a formal one that relies on the structure of

the data. Formal methods nevertheless require a data set that

will be examined for structure; the features that are initially

measured must represent the designer's estimate of discrimina-

tory power. Statistical methods provide guidance in pruning

the candidate feature set when a large data set exists, but

the small data base used here makes the decision-tree method

seem reasonable. The next chapter presents some tools used for

extracting those features.

I1

'I



CHAPTER III

ROUTINES FOR BRIDGE PATTERN DETECTION

The segment of the project discussed in the following has

as its goal the generation of a small set of structures from an

image that are "potential bridges." These bridge candidates

are sets of parallel lines satisfying certain conditions; name-

ly, pairs of lines that are long and relatively close together.

Each possible "bridge" is then subject to a set of tests that

result in the structure being labelled "bridge" or "not a bridge".

The process involves four primary steps:

(1) Pre-processing (if desired or necessary to
down-sample, reduce noise or both).

(2) Edge detection

(3) Recognition of long, parallel lines from the edge-
detected field.

(4) Testing the resulting lines for "bridge" or "non-
bridge" conditions.

Each of these steps is discussed in turn.

Pre-Processing Techniques

Two pre-processing routines have been developed: image

down-sampling and image noise reduction. The potential desir-

ability of these two procedures are clear. For example, the

original images being processed have been digitized to 256

pixels/inch. The image scale, however, may be such that the

21
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structures to be detected are on the order of millimeters or

more. Thus, a large computational advantage may be gained with

minimal relevant information loss by down-sampling the image

to, say, 64 pixels/inch (a 4-to-l down-sampling). The benefit

is a factor of 16 reduction in the number of pixels to be

processed while (as will be seen) retaining essentially all

relevant detail.

The algorithm of Appendix 3.1 allows variable ratio down

sampling in two manners: first, by simply extracting every n-th

pixel in every n-th row (giving an n-to-l down-sampling); or

second by collapsing every n-by-n square of pixels into a single

pixel with a value equal to the average of the n2 pixels. The

first method is computationally much faster and appears to be

equally effective in the images being used. Almost all of the

examples shown in the following are the result of processing

sections of a 4-to-i down-sampled image resulting from method

one. Figure 3.1 is the 4-to-l down-sampled image section con-
Ii

taining a narrow bridge.

The algorithm of Appendix 3.2 is that used for image noise

reduction. One of two types of noise reduction may be performed:

(a) eliminating isolated noise "spikes" via thresholding; or

(b) image smoothing using one of three convolutional masks.

Noise spike elimination is performed as follows: the value

of each pixel is compared to the average of its eight nearest

neighbors. If the absolute value of the difference between the

pixel value and the average is greater than a threshold, the
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pixel is set equal to the average. The threshold level may be

dynamically varied over the image by setting it equal to a spe-

cified number of standard deviations above the 8-neighbor

average. Thus, regions of "smoothness" are compared to a low

threshold while rapidly varying regions are compared to a high

threshold.

Image smoothing is achieved by specifying one of three

3 x 3 convolutional masks providing a range of smoothing. The

three masks are:

Mask 1: 1 1 1 Mask 2: 1 1 1 Mask 3: 1 2 1

1. 1. 2 1 1 2 4 2

il 1 1 1 1 11 2 1

As can be seen, the masks differ in the weighting given to pixels

nearer the central pixel. The convolutions are all normalized so

that the average image brightness is unchanged. Figure 3.2 is

an example of smoothing using Mask 1. As is expected, the image

*1 of the bridge (corresponding to the top half of Figure 3.1) is

broadened and its edge contrast reduced.

Edge Detection

A review of the literature reveals a large number of edge

detection algorithms for digital images, most falling into one

of two categories: template-matching operators [21], [311, and

differential operators [111, [14], [33]. The latter group in-

cludes both 2 x 2 pixel operators ("Robert's" operator) and the

3 x 3 pixel operators ("Sobel" and "Prewitt" operators). Compari-] sons of these techniques [1], [10], (13] in terms of performance

L. .. - , m ..... ,n .. .. .. l m. . .. .. . . . . . .... ." . . . ..
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and computational simplicity suggest that the group of 3 x 3

differential operators may be preferred for the current task.

Thus, it is to this group that attention was directed.

In general, the 3 x 3 differential operators are of the

form:

1 W 1 1 0 -l

F = 0 0 0 G w 0 -w

-1 -W -1 1 0 -I

With W = 1, the operator is known as the "Prewitt" or "smoothed

gradient" operator. With W = 2, it is the "Sobel" operator.

F and G are simultaneously convolved with the digitized image

and an edge is judged to be present if:

(F . B) 2 + (G . B) 2 > A

where A is a pre-set threshold value, and B is the 3 x 3 sub-

image currently being tested. An alternative threshold expres-

sion compares the sum of the absolute values rather than the

sum of the squares, for computational efficiency.

Two potential "improvements" in the performance of the

3 x 3 differential operators have been proposed by Frei and Chen

[14J. The first modification suggests using W = /2. The result

is an "isotropic" operator: that is, one in which an edge is

equally likely to be detected regardless of its angular orien-

tation. To see this, consider the detection of an arbitrary

edge such as in Figure 3.3 located at 900 and 450.

Ic _ _ _ _ _ _. .... ". ..,. .... " ' -... ... ... ..... ........... .
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22100 22221

A 22100 B2 22100

22100 21000
22100 10 000

Figure 3.3. Detection of an Arbitrary Edge

Centering the 3 x 3 operator over the central 3 x 3 images (in

the square) and letting W = 1 ("Prewitt") we get:

F-A = 1.(2+1+0) + 0.(2+1+0) + (-l).(2+1+0) = 0

G-A = 1-(2+2+2) + 0.(i1+1+) + (-1).(0+0+0) = 6

Thus: (F'A)2 +(G.A) 2 = 02+62 = 36

For B: F-B = 1-(2+2+1) + 0.(2+1+0) + (-1).(1+0+0) = 4

G.B = 1.(2+2+1) + 0.(2+1+0) + (-1).(1+0+0) = 4

Thus: (F.B2 + (G-B)2 = 42+42 - 32

That is, the identical rotated 450 results in a lower edge "mag-

nitude" and, all else equal, a poorer chance of exceeding any

specific threshold. Similarly, with W 2 ("Sobel") we obtain:

(F.A) 2 + (G-A) 2 = 64 (900)

(F.B) 2 + (G-B) 2 = 72 (450)

and again the 45* edge results in a higher value (72 vs 64).

If, instead, we let W = V2 ("isotropic") it is observed that:

(F.A) 2 + (G-A) 2 a 36.62

(F-B) 2 + (G-B)2 a 36.62
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i.e., an equal value results from the edge operator at the

different angles.

The second potential improvement deals with the manner

in which the edge thresholding is performed. Suppose the 3 x 3

subimage to be subjected to the edge operator is considered to

be a vector in a 2-dimensional space; the basis vectors of this

space are the "edge* vector (i.e., I + G)* and a vector repre-

senting *all else." This is depicted in Figure 3.4. Tradition-

ally, the. thresholding is performed by determining the edge space

component of B (i.e., the dot product of B with the edge vector,

or edge operator) and comparing it to a threshold value A. Now

-consider the situations illustrated by Figure 3.5.

Non- N Non-
Edge Edge
Space \ Space

\ ,
, -

' Edge L . - Edge
A Space A Space'

Figure 3.4. Thresholding Figure 3.5. Thresholding in
in Edge Space: Case 1 Edge Space: Case 2

*Atually, the *edge space*
defined by Frei & Chen had 0 - -1 0
2 additional components
(H and I, at right) to F H= 1 0 -1 1 -1 0 1
aWd G. In practice, in-
cludIng H and I added -4 1 0 0 1
little tS the 3perator's
performance.
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Here, the projection of B onto the edge space (its edge compo-

nent) exceeds the threshold A, although B actually appears to

be closer to the non-edge space. Alternatively, C is very

close to the edge space but, due to its small magnitude, would

not be called an edge point since its dot product with the edge

space is less than A. Neither case would have occurred if an

"angular threshold" had been used; that is, if thresholding

had been performed not on the magnitudes of B or C, but on the

angle 0 between the vector and the edge subspace.

If: X - (B.F)2 + (B.G)2

is the magnitude of the edge space component of the image vector

B, then e is calculated as follows:

cose - ,- I( -).(. B) -e- arccos(X/(B--i)) 1 12

If e' is the selected threshold, then we will call B an edge

.* point if:

(B.F) + (B-G)2
arccos 1/2 E T <1

(B-B)2

or equivalently, since the cosine is monotonically decreasing

between 0 andir

T Z cos2 e' = A'

Comparing to the previous threshold expression, the net effect

is that the original test statistic, (_E.5)2 + (B.G)2, is divided

by the magnitude of the edge "signal" under consideration, and

compared to a new threshold A'. From an intuitive viewpoint,
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this modified threshold tests for the "closeness of fit" to

being an edge, rather than "strength" of the possible edge

signal.

Using either threshold, the orientation, y , of a detected

edge point is given by:

Y = arctan [(G.B)/(B-B)]

A computer subroutine has been developed to perform the

edge detection operation by convolving the 3 x 3 operator with

an input image (Appendix 3.3). The subroutine calls the edge

operator (Appendix 3.3) for each pixel I and returns for each

pixel judged to be an edge its magnitude and orientation. The

value of W (1 = "Prewitt", 2 = "Sobel", SQRT(2) = "isotropic,"

etc.) is specified, as well as the type of threshold (magnitude

or angular) and threshold level.

Figures 3.6 and 3.7 provide examples of subimages sub-

jected to edge detection using both types of thresholding.

Thresholds were adjusted until both methods generated equal

numbers of edge points. As can be seen, the angular threshold

detected many low contrast edges in the water region which,

although really existing, are irrelevant. Thus, since the cur-

rent task involves detection of structures which may be of

relatively high contrast, the higher sensitivity of the angular

threshold to low-contrast edges may be wasted (or worse, inter-

fering). The method of choice for this project, however,

remains to be determined from experience.
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Line Recognition

The output of an edge detection algorithm such as des-

cribed above is, in general, a set of discrete, disconnected

edge segments, often appearing to be randomly placed. An

example is shown in Figure 3.8. The next test is usually to

use a "linking" or "line building" algorithm. These algorithms

generally look for line segments that fall within a given tole-

rance of distance and orientation of each other. When such

segments are found, they are linked, forming a single longer

line segment. This process continues until all long lines (if

present) are built up. All segments which are below some

threshold value in length are dropped.

The above process, however, can be time consuming and, for

the task of (for example) detecting bridges may not even be

necessary. In the present task, we are not so much interested

in line-building as in the specific question "are there long

lines present in the image?" and, if so, "are there parallel

lines whose lengths are much greater than their separation?".

These questions arise since bridges are, of course, composed of

long, close parallel lines. These types of questions may be

answered using a Hough transform.

Basically, a Hough transform operates on a set of prede-

*termined feature points in the image (or X-Y) space. The set of

edge points resulting from an edge detection operation is such
a set of feature points. The Hough transform uses these points

to generate a set of points in rho-theta space, where the rho

and theta values are coordinates of a line in X-Y space. That

is, it is a line-to-point transformation.
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To explain this transformation, assume that some line L

exists in the image (X-Y) space). This line can be described

by two coordinates: rho(R), the perpendicular distance of the

line to the origin (which may be selected, for example, to be

the lower left corner of the image)# and theta (e), the angle

of the perpendicular with the X-axis (Figure 3.9). Now, let

B be an edge point of L detected by an edge operation. B is

thus a "feature point". An infinite number of lines may pass

through this point. Suppose, however, that we quantize the

angles of the candidate lines into, say, eight values between

0 and 1800 (22.50 increments). Thus, we allow one of eight

lyI,

Fu 3. ,, T D

IFigure 3.9. Hough Transform Definition !

I
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possible lines to pass through B (Figure 3.10a). We now plot

the coordinates of each of these eight lines in (R-e) space

(Figure 3.10b). In general, the result is a curve as in Figure

3.10b.

rho rho

,possible
B lines through

the point B.

Theta Theta

(a) (b)

Figure 3.10. Hough Transform Space

Now, suppose we have quantized rho into, say, n levels so that

I (R-e) space is represented by a 2-dimensional (R-e) matrix

Figure 3.11). We now perform the plotting procedure for each

of the 8 possible lines by incrementing (by 1) the appropriate

cell in the (R-e) matrix. An identical process is performed

for every feature point in X-Y space (i.e., every detected

edge point). The final result is a matrix (in which each

element defines a particular (R-G) pair) whose entries are
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equal to the number of times each cell was incremented. That

is, a cell with a value of 20 implies that 20 edge points were

detected each of which has one of its eight possible lines posses-

sing those (R-0) coordinates. Since, of course, all lines with

rho

00 1- OTheta

Figure 3.11. The R-O Matrix

the same coordinates are collinear, a (R-0) matrix element with

a high value is the same as saying that a large number of fea-

ture (i.e., edge) points lay along the same line. Thus (R-0)

elements with values above some threshold are judged to be

lines (or edges) that exist in X-Y space.

Cells with the same value of e but differing R's repre-

sent parallel lines in the image. Cells exceeding the thresh-

hold that have the same e with R's that are close together define

image lines that are long, parallel and close together. These

are our "potential bridges" (Figure 3.12).

Although more to the point, the above process is still

calculation-intensive with fine quantization, even if the
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1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 000 0 000 00 00 0
2 00 0 00 000 00 00 0
3 0 000 0 000 0 000 0
4 00 0 0 0 0 0 0 0 0 00
5 0 0 0 3 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 1 0
a 0 0 0 0 0 0 0 0 0 0 0 0
9 011 0 0 0 0 0 0 0 0

10 0 0 0 0 0 1 0 0 0 0 0 0 0
it 0 0 1 0 0 1 0 0 0 0 0 0 0
12 00 01 0 210 00 00
13 0 0 0 1 4 0 000 00 0
14 0 0 0 3 4 0 0 0 0 0 0 0
15 0 01 4(185 100 0 00 0
16 0 00 4 5 a 0300001 0
17 0 0 0 2 6 3 3 0 1 1 0 1 0
18 0 0 0 3 0 0 1 6 1 0 0 0 0
1Q, 0 0 0 0 0 0 0 e 0 0 0 0 0
20 0 0 0 0 0 0 0 0 1 0 0 0 0
2 1 00 00 0 000210 00 0

24 0 000 00 00 00 00 0
ANGLE DIVISION - .483077

Figure 3.12. Example of a Hough Transform

if
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number of feature points is relatively small. However, if the

feature points are generated by the edge detection mechanism

previously described, then we are not using all of the informa-

tion at hand. That is, we already have an estimate of the

orientation of the line passing through each edge point: namely,

Y = arctan[(F.B)/(G.B)]

where F,G, and B are as defined before. Thus, rather than cal-

culating rho and theta for a number of possible lines (the

number depending on the quantization of theta) and incrementing

each of the appropriate (R-0) cells, we do it only for that line

most likely to pass through each feature point (i.e., that with

coordinates R,e) [15]. Since we already know e, we calculate

rho:

R = X-cose + Y.sine

where X and Y are the image space coordinates of the feature

point. The net result is a single addition calculation (of R)

for each feature point to obtain the Hough transform, and a

far more efficient way of generating the required "line exis-

tence" information.

A subroutine to perform the Hough transformation in this

manner is given in Appendix 3.3. The program calls the edge

operator for each pixel after which R and 0 are calculated and

the appropriate cell incremented. Thus, this routine performs

image edge detection and Hough transformation simultaneously.

Two weaknesses of the Hough transform become evident when

it is applied to a large input image: first, that a large
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amount of memory is required to store the (R-E) matrix if fine

quantization of rho is desired; and second, that no information

is provided about where in the image the lines exist (i.e., no

end points are provided). These difficulties may be avoided

by using the following scheme: divide the image into a number

of small (for example 32 x 32 pixel) sub-images. Then operate

on these subimages individually. The advantages are as follows:

(1) since the distances in X-Y space covered by the sub-
images will be small, coarse quantization of rho will
be sufficient to maintain fine spatial detail. (Quanti-
zation of e is already limited by the accuracy of the
edge detection angle calculation.)

(2) again, since the spatial distances involved are
relatively small, the question of "where are the line
endpoints" is less important since it is limited to
the range covered by subimage.

As will be described next, the final result of this scheme is

a relatively small set of "bridge candidates" (long, close

parallel lines). These may then be conveniently subjected to

a series of tests or further analyses to determine its "bridge"

or "non-bridge" status.

Figures 3.13 and 3.14 give Hough transforms and inverted

Hough transforms following cell thresholding, for subimages

using both types of edge detection described previously to gene-

rate feature points. In both cases, the bridge candidates

clearly stand out and are easily isolated, although as before,

there are fewer irrelevant entries resulting from the edge

magnitude thresholding process.

Additional Analysis

Although work on this step has just been started, the pro-

cedure is relatively straightforward once the bridge candidatesA ... . ...
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have been isolated. In particular, one could do the following:

(1) decompose the image into textured segments (corres-
ponding to, for example, water, land-urban, and
land-rural via one of several proposed algorithms
[17], [181, [37]. Then, long parallel lines over,
say, water, are very probably bridges.

(2) perform a series of simple "environmental" tests on
each candidate to determine its context. For example,
one could determine a "global contrast", as a measure
of the mean and variance of a block of pixels on either
side of the lines. Those over water would tend to a
uniformity and equality (i.e., similar means and small
variances) for blocks or pixels on either side, since
these would correspond to water. Another simpler pro-
cedure is to calculate the "edginess" of the region
around a bridge candidate. Edginess is taken to be
the number of detected edge points in the region
divided by the total number of points in the region.
(The edge detection algorithm of Appendices 111-3 and
111-5 determine this number automatically for the region
contained within the subimage processed). Edginess
is a common textural statistic and, again, we would
expect the water regions (i.e., subimages containing
bridges over water) would have a much lower amount
of edginess than other regions, due to its high
uniformity.

As an example, we shall use the edginess value defined above
to attempt a classification of four potential bridges. As

before, these candidates are taken to be sets of long, close

parallel lines extracted from image segments. The four are

those from Figures 3.13 and 3.14 (one each), plus those illus-

trated by the image and edge-detected images of Figures 3.16

and 3.17. The Hough transform matrices of these images are

shown in Figure 3.15 with the bridge candidates circled. From

experience, we may set the edginess threshold at, say, 0.20.

Those candidates located in images -with edginess values less

than 0.20 will be judged as being over water, and therefore,

bridges. Results are shown in Table 3.1.

I I I . .. ..
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TABLE 3.1

Edginess of Bridge Candidates

# edge points
Candidate (excluding) Thres- Classifi-

from: bridge pts) Edginess hold cation Actual

Figure 3.13 406 0.41 0.20 Non-bridge Highway

Figure 3.14 84 0.09 0.20 Bridge Bridge

Figure 3.16 313 0.31 0.20 Non-bridge Highway/
Overpass

Figure 3.17 131 0.15 0.20 Bridge Bridge

Summary

Bridge candidates are extracted from raw digitized images

by performing a Hough transform on an edge detected image and keep-

ing only those entries corresponding to long parallel lines that

are close together. These are represented by matrix entries in

the same column (same angle) and in rows that are adjacent or

nearly adjacent. Further testing is then done on this small set

of potential bridges to determine whether or not a bridge is pre-

sent. An example using image edginess in the neighborhood of

the candidate is given.
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CHAPTER IV

THE DISCRETE MEDIAL AXIS TRANSFORM

Introduction

The Medial Axis Transform (MAT) or "prairie fire" skeleton

of an image was first defined by Blum [11 in 1964. There was

a flurry of activity, both theoretical and practical, for the

next 6 years, ending about 1970, (see refs. [31-[81, [191,

1201, [221-[261, [291, [321, [341). Since 1970, the MAT has

been mentioned in some texts ([9], [111, [30], [361), and some

investigators have used it with success in certain problems

([28], [381). Part of the problem with the MAT which caused a

decline of interest in 1970 was that the existing algorithms

were either difficult to understand, or they ran too long on

the computers then available. Moreover, the results were highly

dependent upon the orientation of the object being transformed;

that is, the algorithms were very sensitive to rotation in the

plane. More recently, Wall and his associates 1381 have employed

an algorithm essentially identical to the one described later

in this paper, and Pavlidis [281 has used the MAT as the basis

for defining a variety of shape descriptors for use in pattern

classification schemes.

The present study was provoked by a need to find feature

extraction techniques which could be used to identify bridges in

48
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aerial photographs. As noted earlier, one of the features of a

bridge in a photograph that is potentially useful as a discri-

minator in a classification scheme is the aspect ratio. Another

useful feature is the length of the bridge. Virtually all

bridges are long, and have aspect ratios which are high. Thus,

a test of these two features can eliminate many objects from

further consideration in an automatic bridge identification

scheme.

Both the aspect ratio and the length of an object are

easily extracted from the object's MAT by simple syntax tests.

The definitions of a grammar and the test itself are not dis-

cussed here. Instead, the computation of the MAT in a binary

image by thinning is considered, and extensions to grayscale

images are examined.

A Binary Thinning Algorithm

The "prairie fire" definition of the MAT can be used to

generate an algorithm for the computation of the MAT. For ex-

ample the white areas of a binary image can be skeletonized or

thinned quite easily by application of the thinning algorithm

described below. Black areas can be thinned by complementing

the image both before and after application of the thinning

algorithm.

This thinning algorithm operates by using a 3 x 3 pixel

mask defined as~A B C
D E F]G H I

where the candidate for replacement is the element lying under E.
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The original image is copied, and then the mask is moved over

the original image of size m x n such that the mask does not

extend past the edges of the original mask. Thus, the thinning

algorithm does not have any effect on the border pixels in the

original image.

Initialization is effected by setting a flag and defining

a quantity called "pass number" and setting it equal to 1.

Then the mask is slid across the image beginning with element

(2,2) under E and ending with element (m-l,n-l) lying under E.

At each point, a test is made to see if the element lying under

E is a 1. If not, the mask is slid to the next position. If

the element under E was a 1, then a test is made of the set of

elements lying under mask elements B, D, F, and H. If two or

three of these elements are l's, then the path between each

pair of l's is examined to see if they are connected by l's

where element E is not an allowed path member. For each pair

there are 2 paths around the perimeter of the mask. In order

to pass the test of connectivity between l's, only one of these

paths need be all l's. If the test is passed by each pair of

l's, then the element lying under E in the original image is

replaced with a 0 in the copied image and the flag is reset.

If there were not two or three l's in the set B, D, F, H, or

if the connectivity test is failed by any pair of l's, then

the mask is slid to the next position with no action taken on

element E. At the conclusion of each pass over the image, the

flag is tested. If it is reset, the pass number is incremented,

the original image is replaced with the copied image, the flag
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is again set, and the algorithm proceeds anew. If the flag has

not been reset, then no elements were replaced in the preced-

ing pass, and the algorithm halts by outputting the copied

image.

The operation of the algorithm is shown by Figures

4.1, a, b, and c.

Computation of MAT by Thinning

The conversion of the binary thinning algorithm just des-

cribed to the computation of the medial axis transform is quite

easy. The only additional work required is bookkeeping: i.e.,

a list must be maintained whose elements are certain of the

replaced elements in the image being thinned. The criterion

for inclusion in this list is that the element being replaced

have two members of its set of neighbors, B, D, F, and H equal

to zero. This is the defining relation for a skeleton element.

The actual list consists of more than just elements. It

has four fields for each list member. The first two fields are

the coordinates of the replaced element. The next field is the

pass number in which the replacement was effected. The fourth

field is of variable length and consists of a coded representa-

tion of where the neighbors of the replaced elements were l's

in the set B, D, F, and H. The reason that this field is of

*variable length is that the MAT of an object computed by this

algorithm consists of all the replaced elements in union with

the elements remaining as l's in the thinned image. These

elements are assigned pass number 0 in the list, and they have

no neighbors when replaced since they were never replaced.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0

0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0

S0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 00 0 0 0 0 0

(a) (b)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 a 0 0 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(C) (d)

Figure 4.1. Test Image; a) Original Image; b) After First
Pass of Thinning Algorithm; c) Thinned Image
After Third Pass; d) Skeleton of Image from
MAT Algorithm.
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The coding for the sequence is based upon the well known

chain code mask [301.

701
6 2
543

As an example of the application of this algorithm, con-

sider the image shown in Figure 4.1a. The skeleton of this

image is shown in Figure 4.1d and its MAT in list form is shown

below:

2 2 1 24

2 5 1 46

4 6 1 46

5 2 1 02

5 3 1 06

7 5 1 02

7 6 1 06

3 3 2 24

3 4 0--

4 3 0--

4 5 0--

6 6 0--

6 7 0--

The basis of the algorithm is the prairie fire concept.

A fire lit simultaneously at all points on the perimeter of an

area will burn towards the interior from the perimeter as a

wave would propagate except that there is no superposition.

The points where the propagating fire fronts meet are called

quench points and the distance to the perimeter from each
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quench point is called the quench distance. The set of all

quench points is the skeleton of the object and the set of all

quench points and quench distances is the medial axis transform

of the object.

In the discrete plane, the prairie fire concept can be

implemented by thinning the points on the edge of an object and

keeping track of those points which have two edges, i.e., cor-

ner points, as the object is repeatedly thinned. Keeping track

of the orientation of the corners allows reconstruction.

In the continuous plane, the MAT is s set of connected

line segments made up of straight lines and arcs of parabolas

[25]. In the discrete plane, the line segments are not neces-

sarily connected as the example in Figure 4.1 shows, (see also

191., page 331). Moreover, there is some visible distortion of

the MAT as shown in Figure 4.2b which is a function of the scan

directions as the mask is passed over the image. This factor

must be considered in any grammar which is defined to permit

syntax testing of the skeleton or of the MAT itself.

The MAT in the discrete plane is also somewhat sensitive

to rotation, as is discussed in [9]. This sensitivity is not

significant if the definition of the grammar takes it into

account. Hence, it will not be further considered in this

paper inasmuch as it will be dealt with in a future paper on

grammars for syntax testing of MAT's.

Montanari's Method

Montanari [24] formulates the determination of the dis-

crete MAT as an optimal policy problem, that is, solving the
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b

Figure 4.2. Rectangles and Their MAT's: a) continuous; b) discrete.-

a b

d

Figurw 4.3. Recticular Networks: a) n-0; b) n-1; c) n-2; d) n-3.

4- L . .. ... . . .
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!
problem of finding the shortest path through a network. For

the discussion that follows, one must realize that Montanari

computes external MAT's, that is, MAT's which lie outside the

boundaries of the objects. To arrive at MAT's which have a

finite set of points on the skeleton, i.e., bounded MAT's,

Montanari employs "hollow" objects for his examples, that is,

he computes the MAT for either unbounded, simply connected

objects, or for multiply connected objects and the MAT lies in

the bounded exterior of the object.

He begins by defining a reticular network of order n as

one where the slopes of the lines connecting the center of the

network to the vertices in the first octant form a Farey se-

quence of order n (defined as the ordered sequence of all

rational numbers between 0 and 1 with denominators less than

or equal to n) as shown in Figure 4.3.

He then defines three sets. Set U is the set of all the

vertices which are in one-to-one correspondence with the coor-

dinates of the pixels in the image, i.e.,

U = [P'I 1 < x p :j r; 1 S y . s; (xp,yp) = pixel coordinates].

set I is the set of vertices defining the object:

I - [P'I a(P) = .True.]

i.e., the set corresponding to the pixels belonging to the ob-

ject. Set E is the complement of the set I, i.e., E - U - I.

Also defined is an extra vertex, PN'' which is assumed to be con-

nected to every vertex I by an arc of length zero.
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Now for every Pi e U, there is a minimum arc length con-

necting pi' to PN' which lies on a set of network rays. This

minimum distance Montanari calls the quasi-Euclidean distance

since from any n, n finite, Dq(PIP 2 ) < DE(PIP 2 ) and in the

limit as n + , Dq . DE where Dq is the minimum distance along

the network paths and DE is the usual Euclidean distance.

DE = [(x1 - x2)2 + Y- (1)

A point Pi can be defined to be a skeleton point if and

only if Pi' e E and it does not lie on a minimal path from any

other vertex Pj' to PN'" Thus, for every vertex Pi'' the mini-

mum path to PN' is found and all the Pj', j 3 i, lying on this

path are removed from further consideration since they cannot

be skeleton points. The length of the path is also found and

is associated with Pi' as a function T(Pi'). The set, S, of

all Pi' which remains after the entire set U has been examined

is the skeleton and the set of all the T(Pi') defines the

quench function.

Montanari determines the difference between the quasi-

Euclidean distance and the true Eucludean distance by comput-

ing the error, e, where

T(PI' P2 ') - DE(Pl', P2 ')

T(P1 '' P2 ')

'where P1 ' and P2' are any two points in the plane.
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Montanari's Algorithms

Montanari has devised two algorithms to compute the dis-

crete MAT. His first approach is to solve the set of equations

Ti = min(tij + Tj) i = 1,2,...,N-1; j = A,2,...,N, j , i (3a)

TN = 0 (3b)

where if the arc connecting vertices Pi' and P.' exists, tij is

the length of this arc; otherwise tij = -, and where i is an

index indicating the forward raster sequence number. The

initial condition is that Ti = tiN. Then the iterative formula

is

k j in r -k) i = l,2,.,N (4
T = min (tij + T, tr + ... ,N-1 (4)

Pj ' E
S.il

kPr . i2

k ,k
where Eil is the set of vertices Pj' for which the value Tj was

thk k
computed in the kth iteration, andfi2 = U - El 1 [Pi1 " The

iteration stops when Ti!l - TIP - T for alli

Now the order in which the T are computed is arbitrary.

However, the rate of convergence is a function of the order of

computation. Montanari has found an order of computation for

which convergence is achieved in only two iterations. The

secret to this rapid convergence is the fact that the image is

a rectangular array and that information gained during the first

iteration is used to reduce the computation necessary during

the second iteration.
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The way this works is that by scanning the array in a

forward raster sequence in the first iteration and with a back-

ward raster sequence in the second iteration, T2 = Tj for all

Pj' in two iterations. Moreover, he only considers Pi' e E since

for Pi £ I, Ti = 0, and in the first iteration, he can ignore

the vertices Pr' C Ei2 because Tr 0. Other shortcuts are based

upon the fact that the set Ell is empty, hence 1i = " and that

E12 =Eil E and that El 2 = E2= Ei 2 so that direct use of
Ti can be made in the second iteration.

The algorithm is as follows:
1

a) Let Ti = 0 if P -I (5a)

T if P1 C E (5b)

1 1
Ti = min (tij + Tj) if Pi C E (5c)

P.' e El
i ~J' -il

where Ei = [Pj' j <i]

b) Let (1) min (ti + T2 , T) i =n-l,..
J 1

2
2T P E 2  if Pi E , and

(2) 0 if Pi' £ I

where E12 =Pj' I j> ii, and U E V I El V E2 V [Pi'].

c) Let S - [P P E for every Pi' directly con-

22nected to Pk' Tk 4 T? - tik] (7)

d) Associate to every Pk £ S the parameter Tk.
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I
As an example of Montanari's first algorithm, consider

the example of Figure 4.1a. We first complement this image to

yield the image shown in Figure 4.4a. Then we "countersign"

all the points which are in the set I with 0's and leave the

remaining points blank, as shown in Figure 4.4b. Then, employ-

ing the reticular grid of order n = 2, we have after the first

iteration the representation shown in Figure 4.4c. The second

iteration produces the representation shown in Figure 4.4d.

We then examine all the Pk'e E for the test specified in (7),

and assign to each survivor Pk' its associated value Tk. The

resulting MAT is shown in Figure 4.4e. Note that this MAT is

fuller, i.e., has more points on the skeleton than does the MAT

in Figure 4.1d. Also different are the distances or quench

function. This is to be expected since the local vicinity,

i.e., mask, in the algorithm used to compute the MAT in Figure

4.4e is larger than that used to compute the MAT of Figure 4.1d.

In order to make a more realistic comparison between these two

algorithms, the first Montanari algorithm was reapplied with

n = 0. The results are shown in Figure 4.4f.

We note that this MAT, while more similar to the MAT of

Figure 4.1d than the one computed with n - 2, is still diffe-

rent. Thus, the choice of algorithm is another factor which

must be considered in the design of a grammar for describing

the syntax of the MAT.

Montanari's second algorithm is a Dantzig (one-pass)

algorithm. The algorithm proceeds as follows:

4
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1 11 I 1 0 0 0 0 0 0 0 0

10 0 0 0 1 .11 0 0 0 0

1 0 000 1 11 0 00 0

1 0 0 0 0 0.1 1 0 0 0

100 0011 0 0 0 0

11110001 0 0 0 0 0

I 1 00 11 0 0 0 0 00

S11 I I I 1 0 0 0 0 0 0 0 0

a b

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 11 1J 0 0 0

0 1 2 2XI 0 0 0 0 1 2 2 1 0 0 0
0 1 2 ..5 1 0 0 0 1 'f1 I -A 1 0 0
0 1 2 1 0 0 0 1 1 0 1 0 0

0 0 0 0 1 1 0 0 0 0 1 0

-0 0 0 1 200 0 0 0 0 1 0

0 0 0 0 1 2 0 0 0 0 0 0 1 1 0 0

o d

,;2 2 2 . * * 2 *

o2 I 2 • 2

I ff 1 1.

* f

Figure 4.4. Montanari's First Algorithm: a) Original Image;
b) Countersigned Image; c) After First Iteration,
n-2, d) After Second Iteration, n*2; e) MAT for
n-2; f) MAT for n-0.
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(1) Examine all Pk' to find tkN such that tkN = min tjN.

Obviously TN = 0, and Tk = tkN. Then define the sets

2= - E2

(2) Compute the values

e, = min (thx + Tx) Ph' £ - (8)

(3) Compute

+= = -kE (9a)

1= .r E [Pk'- (9b)

If E2 + I is empty, stop; otherwise repeat steps (2) and (3).

For the vertices Pk accepted in the mth step, remember the ver-

tex (or vertices) Px' for which (tkx + T) is the least in (8),

i.e., for which Tx = Th - thx, and countersign all the Px' that

are encountered in this manner. The non-countersigned vertices

belong to the set S.

The algorithm is demonstrated for n = 0 by again consider-

ing the image in Figure 4.1a. The intermediate operations and

the results are shown in Figure 4.5. We note that Figure 4.5c

is identical to Figure 4.4f, demonstrating the equivalence of

these two algorithms.

Montanari also proposes a method of eliminating insignifi-

cant skeleton points by introducing a threshold function into

his algorithms. For the first algorithm, this involves changing

the criterion for inclusion in S as follows;
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Figure 4.5. Montanari's Second Algorithm for n-0; a) Original
Image; b) After Application of Algorithm; c) MAT
Resulting from Algorithm.
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S = [Pi I Pi' e E; for every Pj', Tj - T i < K.tij] (10)

and for the second algorithm, countersigning the vertices for

which Tx S Th - k'thk, where K is the threshold coefficient,

0 < K < 1.

The major use of this threshold function is to eliminate

skeleton noise introduced when n > 0. Montanari suggests as a

rule of thumb that K < 0.70, and in his paper [241 he gives an

example for three values of the threshold showing 0.70 to yield

the best results.

Montanari's Gray Weighted Skeleton

Montanari and Levi [23] are able to extend Montanari's

algorithms for finding MAT's of binary images to gray scale

images by defining a new metric for measuring distances in the

reticular networks. They do this by first specifying some gray

function f(x,y) in the real plane which interpolates the gray

values found in the discrete image. The metric tijrs is de-

fined as

tij,rs = f f dl (11)

1

where the integration path lies between P(i,j) and P(r,s).

In the case of binary images, the first of Montanari's

algorithms converges in two iterations. Now, however, the first

method cannot be assumed to converge in two iterations. The

algorithm is modified in the following manner. We now assume

that the skeleton is internal to the object instead of exter-

nal to it as before. Hence, we place zeroes at all the vertices

external to the image and blanks at the remaining vertices.



65

Then each element is considered sequentially and a new value

is computed from the following formula:

bij= m (bi brs + tij,rs)

[Prs '

where [Prs'] is the set of vertices directly connected to Pij

for which new brs have already been computed, as before. The

method is applied with forward raster sequence alternating

with backward raster sequence until the image is unchanged in

both directions.

The computation of tij,rs can involve considerable work

depending upon the interpolating function chosen. For the step

function, the work is easy since

tij,rs = (I/2)(aij + ars) " tij',rs (13)

where tij,rs is the true length of the arc connecting Pij and!D
Prs

The skeleton points are those for which

bij > max (0, brs - tij,rs ) (14)

, [P r s

where [Prs ] is the set of all the vertices directly connected

to Pi

Figures 4.6, 4.7, and 4.8, taken from [23], show the

method applied to a digitized image of a human chromosome.

Montanari and Levi do not explicitly describe the altera-

tions necessary to the second algorithm in order to compute
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gray weighted MAT's, but the alterations are obvious, since the

only thing that is changed is to compute the distances in

accordance with the metric defined in (11) instead of that de-

fined in the explanation of (3a) and (3b).

One thing that needs to be made clear at this point is

that the bij are taken from the previously computed image at

each pass except the first, and that the aij are always taken

from the original image. It is easy to see that if the aij

and bij are always taken from the same image, then convergence,

at least in the case of the step interpolating function (13),

cannot occur in a finite number of steps (Zeno's paradox

revistedl).

A Grayscale Thinning Algorithm

Dyer and Rosenfeld (36] have devised the following algo-

rithm for thinning grayscale images. The algorithm is based

upon a grayscale scheme in which 0 is the maximum intensity

value, i.e., the larger the grayscale value, the darker the

pixel where a white pixel is assigned value 0.

Using the pixel neighborhood defined above, Dyer and

Rosenfeld define the range, R, in the neighborhood as

R = max(B,D,E,F,H) - min(B,D,E,F,H) + 1 (15)

and choose an appropriate fraction, f, (OSf. l) such that [fR]

= r', 0< R< R. Then the conditions which must be met for re-

placement of the element under E are:

(1) at least two of B, D, F, H have values £ E -R;
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(2) for each of the six pairs of B, D, F, H, let m be the
pair's minimum; then either E m - R' or there is a
path on the perimeter of the mask, i.e., not involv-
ing E, such that for every point p on the path,
p < M - R'.

Iff conditions (1) and (2) are met, then E is replaced by

the minimum of itself and 2 members of B, D, F, H. The choice

of the 2 members of B, D, F, H is what determines the relation-

ships of the objects in the thinned image to the objects in the

original image. Dyer and Rosenfeld leave this choice to the

user. In the case at hand, it is desirable to skeletonize the

objects in the image, so the choice is made as follows. Set a

flag, then scan the image by sliding the mask over the image

in normal raster scan beginning with element (2,2) under E and

ending with element (m-l,n-l) under E. At each point perform

tests (1) and (2). On the first pass through the image and on

all succeeding odd passes, replace E with the minimum of B,

D, E. On each even pass, replace E with the minimum of E, F, H.

When E is replaced, the replacement is written into a copy

image which is created at the beginning of each pass.

The tests (1) and (2) are made on the original image in

the first pass, and on the result of the previous pass on all

succeeding passes. When E is replaced, the flag is reset. The

procedure stops when a pass has been made and no E is replaced,

that is, the flag is found set at the end of a pass.

The performance of this algorithm is dependent upon the

range of grayscale values in the image and upon the choice of

threshold.
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Computation of a Grayscale MAT by Thinning

To convert the grayscale thinning algorithm of Dyer and

Rosenfeld to compute the MAT of a grayscale image, all that

has to be done is to build a list as was done earlier in the

case of the binary thinning algorithm. In this case, there are

two ways of defining the skeleton points: in the first, an

element is a member of the skeleton iff two of its neighbors

B, D, F, H have values < E - R'; in the second, an element is

a member of the skeleton iff two of its neighbors B, D, F, H

are less than E. The pass number, chain code scheme, etc.,

are no longer important because grayscale images cannot be

reconstructed from their MAT's.

The results of this algorithm are compared to the algo-

rithm of Levi and Montanari in Figure 4.9.

Conclusions

The Medial Axis Transform (MAT) of discrete binary and

grayscale images can be computed by two different techniques,

i.e., thinning and distance measurement, both of which simulate

the "prairie fire" concept. The results of the two techniques

differ, and it appears that the distance measurement techniques

requires fewer operations, that is, it converges in fewer itera-

tions. Moreover, the skeletons from the distance measurement

technique appear to be more complete.

The thinning technique corresponds to the N = 0 case for

Pthe distance measurement technique. Although it is possible

to define more complex thinning algorithms, it does not appear

to be a fruitful area. The capability of the distance measure-

L
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ment technique to be extended to higher order is a definite

advantage in cases where the fine structure of the skeleton

becomes important. A possible example of this could be in

identifying a certain chromosome-which closely resembles other

chromosomes, etc.

Based on these findings, it appears that the distance

measurement technique is preferable to the thinning technique

and that future work should concentrate on the application of

the distance measuring technique to pattern classification.

*6J
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CHAPTER V

LINE CODING TECHNIQUES AND APPLICATIONS TO
AIRPORT PATTERN CLASSIFICATION

Another aspect of digital image processing that has re-

ceived much attention in the recent literature is the subject

of image coding. The underlying objective of image coding has

been the representation of an image with as few binary digits

(bits) as possible, under the constraint that the resulting image

contains some minimum level of fidelity (also called minimizing

distortion). This portion of the report surveys the subject of

image coding in some detail, in addition to presenting several

specific coding schemes and illustrating each with an example.

Before presenting the two categories (or classes) of image

coding schemes that will.be covered in this report, it is neces-

sary to define the meaning of the word "image." Throughout this

coding discussion, the word "image" is to be taken as being

I, synonymous with the words "digitized (i.e., quantized) line

drawing." A line drawing is in turn defined as a two-dimensional

representation of a digitized two-dimensional image in which only

the boundaries (between each region in the image that possesses

a constant gray level) are drawn (or "traced"). In other words,

a line drawing merely preserves the boundaries formed by the

different gray levels that appear within a quantized image.

74
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For the purpose of the subsequent coding discussion, then,

an image is taken to mean a two-dimensional line drawing that

has undergone a quantization process. The degree (or "fineness")

of this process is an important parameter in any digital image

processing system, as it influences both the computer storage

and processing requirements of such a system. For if an image

is quantized very finely, then a large amount of computer

memory and processing will be required; whereas, if an image

is quantized too coarsely, computer memory and processing will

be reduced, at the expense of a loss in image detail. Thus,

such quantization should be as coarse as possible, while pre-

serving those features of the original image that have been

deemed significant [441. The interested reader is referred to

references [401 and [44] for a more detailed discussion of the

quantization of continuous line drawings.

This portion of the report presents a survey of several

schemes for the encoding of quantized line drawings. While the

impetus for this discussion of image encoding was at least

partially explained in the opening paragraph of this section,

the reasoning behind the subsequent definition of an image as a

quantized line drawing may not as yet be apparent to the reader.

First of all, given that any modern image processing system em-

ploys one or more digital computers, then some analog-to-digital

(A/D) process is required in order to convert the original

analog (i.e., continuous-tone) image into its equivalent digital

(i.e., discrete) representation. This A/D process is referred

to in the literature as quantization. Secondly, many image
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0
processing systems seek to recognize and classify particular

objects (whether natural or man-made) of interest to the user.

This latter process is referred to as pattern recognition in

the literature (e.g., references [111, [181, [31]. From the

point of view of pattern recognition via computer, line drawings

have represented an important category of image representation

[44]. It is for these reasons that we focus on the encoding

of quantized line drawings.

Coding Categories

The various image coding schemes that will be discussed

in this report can be divided into two categories:

- Line-by-Line Encoding

- Two-Dimensional Encoding

The first category, that of line-by-line encoding, involves the

encoding of a digitized image on a per-scan-line basis. Irn

other words, any encoding scheme within this category operates

on each scan line independently of all others in the image.

The following line-by-line encoding schemes will be discussed

subsequently:

- Run-Length Encoding

- Differential Encoding

The second category, that of two-dimensional encoding, contains

less restrictive encoding schemes in which each scan line is

not encoded independently, but rather as a function of one or

more of its adjacent scan lines. Thus, this latter category,

unlike the first, inherently assumes that a given digitized

image cannot be considered to consist of (either horizontal or
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vertical) scan lines that are independent of each other. The

following two-dimensional encoding schemes will be detailed

later in this report:

- Chain Encoding

- Chain-Difference Encoding

- Line Adjacency Graph Encoding

-Region Adjacency Graph Encoding

A detailed discussion of and an illustrative example for each

of the aforementioned encoding schemes are presented in the

following paragraphs.

One-Dimensional Methods

Run-length Coding

As mentioned previously, run-length encoding falls under

the category of line-by-line encoding. Run length encoding is

a relatively simple scheme in which the amplitudes of adjacent

image points along a scan line are compared [301. The run

length is the number of juxtaposed image elements along a scan

line having the same amplitude (i.e., gray level). Thus, for

a given scan line whose image points are denoted XI, X2,

X3,...,XN, this scheme maps this sequence into a sequence of

integer pairs (gk' tk )' where tk equals the number of conse-

cutive image points of amplitude gk"

The details regarding run length encoding are 6escribed

in [471 and summarized as follows. For the first scan line of
an image, the amplitude of its leftmost pixel is set equal to

gl and 11 is set equal to the length of the run of points with

this same amplitude gl. Then at the first amplitude transition,
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92 is set equal to the amplitude of the second run, with t2

equal to the length of this second run. This procedure is

repeated until the end of the first scan line, after which suc-

ceeding scan lines are similarly encoded. It is evident then

that, for any given scan line, the number of runs can vary from

one (in which case every pixel has the same amplitude) to N

(when no two adjacent points have the same amplitude). Corres-

pondingly, the run lengths Zk can vary from N to one. An

illustrative example of run length encoding is presented in

Figure 5.1.

Differential Coding

Another line-by-line encoding scheme mentioned earlier

was that of differential encoding. The motivation for this

scheme is the fact that since adjacent image points along a

scan line are highly correlated in most pictures, there exists

a high degree of redundancy between such pairs of points [30].

In differential encoding, only the differences in amplitudes

of adjacent image points are encoded along a scan line, after

having encoded the actual amplitude of the first point in that

line. Thus, only the relative amplitude of each successive

point after the first point in each scan is encoded in this

scheme. However, a little thought would reveal that there is

no real difference between run length encoding and differential

encoding in terms of the encoding of quantized line drawings,

as their points can be one of only two values: black or white.

Thus, differential encoding will not be discussed further in

this report.
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a) Continuous Line Drawing

-" b) method of quantizing line drawing shown in a)

Scan Line --- •••.

* 0

Scan Line 2---- 0
Scan Line 3-----o"
Scan Line 4------*
Scan Line 5----+-

c) uantized line drawing corresponds to a)

For Scan Line 1: (0,2), (1,4), (0,2)
For Scan Line 2: (0,), (,1),)0,4), (,1), (0,1)
For Scan Line 3: (,1), (0,6), (1,1)
For Scan Line 4: (0,2), (0,6), (0,2)

For Scan LIne 5: (1,8)

d) Code resulting from the Run Length Encoding of c)

Figure 5.1. Continuous Line Drawing and its Quantized
Regenerations
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Two-Dimensional Methods

Just as it was true for the line-by-line encoding schemes

discussed above, there are similarities between the four two-

dimensional encoding schemes that will be covered in this report.

Associated with two of these schemes (namely chain encoding and

chain-difference encoding) is a particular quantization scheme,

called grid-intersect quantization [45], that will first be des-

cribed in the following paragraph.

Imagine that a uniform, rectangular grid is first super-

imposed on the continuous line drawing that is to be encoded.

A quantized version of this line drawing can then be derived

via a list of the coordinates of those grid intersections which

come closest to lying on the continuous line drawing [501. Thus,

one representation of this line drawing is simply the list of

these "line drawing points." However, it is not necessary to

store this entire list of X-Y coordinates. Instead, each suc-

.* cessive point in this list can be encoded relative to its

previous point. The two aforementioned two-dimensional encod-

ing schemes are two specific methods of performing this encoding,

and each scheme is described below.

Chain Coding

Assuming that a given continuous line drawing has been quantized

via the grid-intersect quantization method, then the chain en-

coding of the resulting quantized line drawing proceeds as

follows. First, a point is chosen as the "starting point."

The line segment from this starting point to the next point in

the quantized line drawing can then be uniquely described (due

<I __
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to the grid-intersect quantization) by the angle (measured

clockwise) that this line segment forms with the positive x-axis.

Thus, the chain encoding scheme represents this segment (and

every successive line segment that makes up the quantized line

drawing) by one of the following eight single-digit numbers:

Chain-Encoded Angle Between Segment
Representation and x-axis

0 00
1 450
2 900
3 1350
4 1800
5 2250
6 2700
7 3150

An example that illustrates both the grid-intersect quantization

and this chain encoding scheme is shown in Figure 5.2, and fur-

ther discussion of this scheme can be found in [431, [45], and

[50].

Chain-Difference Coding

Chain-difference encoding is a modified version of chain

encoding in which the difference in the angle between successive

line segments is encoded (i.e., the relative angle between any

two adjoining segments), rather than its actual value. Chain-

difference encoding makes sense because, assuming that the

quantization on the continuous line drawing was sufficiently

fine so as to preserve all the detail of interest, then it

follows that the (relative) difference in angle between ad-

joining line segments will ordinarily not exceed ±450, whereas

turns of ±900 will be infrequent, and those exceeding 900 will



82

a) Continuous Line Drawing

* 0,0 0 0

b) Quantizing a) via Grid-Intersect Quantization

Starting Point-*-

c) Quantized line Drawing corresponding to a)

44

d) Chain Encoding Scheme to be utilized on c)

2,2,1,1,0,0,0,7,7,6,6,4,4,4,4,4,4,4

e) Code resulting from chain encoding c) viad)

Figure 5.2. Grid-Intersect Quantization and Chain Encoding
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be fairly rare [45]. Chain-difference encoding takes advantage

of this information by representing the small angle differences

by a short code, while using successively longer codes to repre-

sent the larger possible angle differences (analogous to Huffman

Codes, which are detailed in [46]. Thus, it can be shown that,

in general, chain-difference encoding requires only slightly

more than two-thirds of the storage required by chain encoding

[45].

Both chain encoding and chain difference encoding are two

of the two-dimensional encoding schemes in which the input image

is basically considered to be a linear and ordered list of ele-

ments [50]. But another methodology for encoding continous line

drawings is to consider them as a set of interrelated objects or

regions. The remaining two encoding schemes, that of line

adjacency graph encoding and region adjacency graph encoding,

implement this methodology. Both of these schemes are detailed

in [50] from which the following discussion is taken.

Line Adjacency Graph

A line drawing consists of black lines on a white back-

ground (or vice-versa). The line adjacency graph encoding

scheme is similar to the run-length encoding scheme described

previously in that both schemes successively scan each line

that constitutes the quantized line drawing in order to record

where within each scan line there is a change (called a break

point) from black to white or white to black. However, the

line adjacency graph encoding scheme partitions each scan line

into segments at these break points. As the line drawing is
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scanned, a graph structure called a line adjacency graph is

constructed as follows. The "nodes" of this graph consist of

those segments (or individual points) that constitute a part

of the line drawing. Any two nodes of this graph are then

"connected" if the following conditions are satisfied:

(1) If the segments (or points) represented by the two
nodes lie on adjacent scan lines,

(2) If the segments (or points) also overlap when pro-
jected onto a single line.

An illustrative example of this scheme is shown in Figure 5.3

It is evident from the preceding discussion that the use-

fulness of this line adjacency encoding scheme lies in the fact

that it retains the two-dimensional structure of the line draw-

ing. Thus, this scheme is more powerful than any line-by-line

encoding scheme, which preserves left-to-right relations but

not up-and-down relations.

Region Adjacency Graph

A related structure that is also useful in segmentation

of a line drawing is called the region adjacency graph [50].

In this type of graph, the nodes represent regions shown in the

line drawing, and two nodes are connected if the regions repre-

sented by these nodes are adjacent. An illustrative example of

this region adjacency graph encoding scheme is presented in

Figure 5.4.

Comparison of Types

At this point the reader should not only be familiar with

several specific image encoding schemes, but should also have
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a) Continuous line drawing of the letter W.

!C

Scan Line 1 0,
Scan Line 2--- ,
Scan Line 3 -- **

Scan Line 4-.'
Scan LineS- e

Scan Line 6-.--

b) Quantized representation of a)

For Scan Line 1: *-Node

For Scan Line 2:

For Scan Line 3:

For Scan Line 4:

For Scan Line 5:

For Scan Line 6:

w

) Line Adajacency Graph Encoding of b)

Figure 5.3. Line-Adjacency Encoding
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b) Region adjacency graph encoding corresponding to a)

Figure 5.4. Region-Adjacency Encoding
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a better insight into why these schemes were divided into two

fairly distinct categories: line-by-line encoding vs two-

dimensional encoding. So now an interesting question arises:

Does either of these categories have any inherent advantages

over the other? This question is addresssed both from a prac-

tical and a more theoretical aspect in the following paragraphs.

From a practical standpoint, those encoding schemes that

fall under the category of line-by-line encoding are superior

to those that were categorized under two-dimensional encoding.

The reason for this lies in the fact that, almost invariably,

one of the first steps that any digital image processing system

implements is to convert an input two-dimensional image into a

series of independent scan lines (either horizontal or verti-

cal). Subsequent encoding of each of these independent scan

lines via a particular line-by-line encoding scheme yields a

considerable reduction in computer processing complexity and

storage requirements over those of two-dimensional encoding [49].

Before comparing these two categories of image encoding

schemes from a more theoretical standpoint, a brief discussion

of rate distortion theory is necessary. This theory centers

around a concept called the rate distortion function, which will

be introduced via the simplified block diagram of a communica-

tions system shown in Figure 5.5. The following development

is taken from [41].

Rate Distortion Theory

Given the source (e.g., an image) shown in Figure 5.5,

the communications systems engineer is confronted with the
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problem of encoding this source in such a way that the channel

capacity requirement for transmission is minimized. (The

"capacity" of the channel of Figure 5.5 will be defined short-

ly). To achieve this, he is willing to tolerate some average

distortion between the source output and the decoder output.

* The problem addressed by the subject of rate distortion theory

is the minimization of this channel capacity requirement while

maintaining this average distortion at or below an acceptable

level (as defined by the user).

To be more specific, let the average information trans-

I mitted from the source output (labeled X in Figure 5.5) to the

decoder's output (labeled by Y in this figure) be denoted by

a function I(X,Y). Further, assume that more information

corresponds to larger values of this function I(X,Y). Now let

the analogous average information transmitted from the source

encoder output (labeled U) to the channel output (labeled V)

be denoted I(U,V). The "capacity" herein denoted by C of the

.1 channel shown in Figure 5.5 can now be defined as the maximum

of I(U,V) over all possible input devices. It is then evident

I via Figure 5.5 that the intervening nature of U and V implies

that:

I(X,Y) < I(U,V) I C

Establishing that it is possible for I(X,Y) to be arbitrarily

close to C for an arbitrary source and channel is not so easily

performed, and the interested reader is referred to references

[39], [411 , [461, and [491 for further details. Suffice it to

Li
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aay that the rate distortion function, usually denoted R(D),

is the minimum value of I(X,Y) for a given distortion level D,

and only for values of R(D) less than C can the communications

engineer be insured of obtaining a distortion level D with the

system of Figure 5.5. In other words, this rate distortion

function R(D) is the minimum source encoder output rate, and

hence minimum channel capacity, required for a given average

distortion level D.

The impetus for this introduction of the rate distortion

function will now become apparent. It should be evident from

the above discussion that a rate distortion function could be

derived for a system of Figure 5.5 employing a line-by-line

source encoding scheme. Similarly, another rate distortion

function could be derived for an identical system employing a

two-dimensional source encoding scheme. A comparison of the

resulting rate distortion functions could then be utilized to

determine which of these two schemes has a theoretical advan-

tage over the other.

Generalized rate distortion functions for both the line-

by-line encoding and two-dimensional encoding of a particular

two-dimensional image (that is homogeneous and isotropic) are

each derived in [49]. However, the resulting pair of rate dis-

tortion functions is found to be too complex to permit a direct

comparison between them. Thus, [49] proceeds to numerically

evaluate these two expressions for a particular example. The

results of this evaluation can be summarized (49] as follows:
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(1) Two-dimensional encoding permits a decrease in coding
rate by a factor of 2 to 3 over that of line-by-line
encoding, and

(2) In line-by-line encoding, the selection of the line-
width between consecutive scan lines is crucial in
achieving an efficient coding rate.

While the authors of reference [49] achieved these results via

a number of simplifying assumptions, they feel that their con-

clusions (stated above) are indicative of the differences for

these two categories of encoding complexity. Furthermore, a

later and independent evaluation by another author was in

approximate agreement with their first conclusion above (see

(41]). Thus, from a theoretical standpoint, it appears that

any two-dimensional encoding scheme is superior to any line-by-

-line encoding scheme.

Line Drawing Encoding - An Airport Example

Introduction

The notion that precipitated the interest in image coding

was the proposition that, given a complex image, there exists

some series of preprocessing followed by suitable encoding that

may result in a symbol stream that exhibits a regonizable pat-

tern characteristic of an identifiable object. The system

proposed in the notion is shown in Figure 5.6. A variety of

image encoding schemes has been proposed in the literature.

Some of these are listed in Table 5.1. Other techniques that

are often used in the image processing context, some or which

may be considered an encoding techniques, are shown in Table 5.2.

- U --
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Table 5.1

A Sampling of Available Image Encoding Techniques1

Error-Free Encoding Schemes

* Difference Encoding with Shift Coding
* Contour Encoding
* Gray Code
* Huffman Code
• Shift Code
• Run-Length Encoding

- One-Dimensional
- Two-Dimensional

Error-Friendly Encoding

* Differential Pulse Code Modulation (DPCM)
* Transform Encoding
0 Hybrid Encoding

* Hotelling Transformation

' 4

'(From (47]).
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Table 5.2

Symbolic Image Description Techniques

0 Connectivity (Pixel Connectivity)

Line Description

- Curve Fitting

- Line-to-Point Transformation

Shape Description

- Metric Attributes Area
Length-to-Width Ratio
Perimeter
Perimeter to Area Ratio

- Topological Attributes Euler Number
Connectivity

- Analytical Attributes Polar/Fourier Curvature
Function

Moment Approximation

Associated Tools and Techniques:

* Shrinking, Thinning, and Skeletonizing

0 Amplitude Segmentation

- Luminance Thresholding

- Multidimensional Thresholding (Color)

I - Regional Growing

* Edge Segmentation

- Curve Fitting

- Contour Following

- Edge Point Linking

Texture Segmentation

Shape Segmentation
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Encoding as an Identification Tool

Used in its most familiar context, encoding is a process

whereby information in one format is converted into another for-

mat as a necessary step in some transmission or storage process.

In this context the objective of the encoding scheme, as noted

earlier, is to convey the original information content with

minimum loss of information and added extraneous information,

while using the minimum number of encoding symbols. In the

image identification problem the objective is quite different.

Here the goal is to choose an encoding scheme that preserves

only enough information to identify those key attributes that

uniquely identify the target or interest. "How do the two

situations differ?", one may ask. In the one case (the trans-

mission or data storage example) the observer may be required

to distinguish details or attributes that cannot be established

a priori. Such an example may be a specific human face as

opposed to a general decision that a human face is indeed being

displayed. In the latter case, as in this study, the objective

is to identify an object that belongs to a specific class of ob-

jects. While the individual members of the class may exhibit

characteristics that set themselves far apart from other members

of the class, they all share one or more common characteristics

that we use to combine them in description as a common entity.

These characteristics are the only characteristics necessary

to encode if an encoding scheme is indeed to be useful as a

tool in the image identification process. In addition, target

information that merely details the class member or simply makes
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it somewhat different from another member of the class is ex-

traneous to the target identification process. In the encoded

form the resultant encoded version of the image may therefore

contain information extraneous to the target identification

process. This information will serve only to increase the pro-

cessing required to complete the pattern recognition process.

The objective, of course, is to choose a preprocessing scheme

and particularly an encoding algorithm that suppresses the

noise (image detail) and retains or emphasizes only that infor-

mation relative to the attribute or attributes that uniquely

identify the target as a member of the target class of interest.

Of course some encoding schemes may be appropriate to the

situation described above. It is proposed here that the validity

of the proposition is a function of the nature of the class and

the level of specificity of the definition of the class. Two

specific example targets will be proposed in the following dis-

cussion. In both cases Freeman chain encoding will be proposed

as an encoding scheme. In the first case, the scheme appears

to be an appropriate and quite valuable technique to aid in a

straightforward implementation of the identification process

of Figure 5.6. In the second case, quite the opposite is true

due to the level of variation of the members of the class.

In one proposed scheme for target identification perhaps

one or more of the tools and techniques like those identified

in Table 5.2 would be required to preprocess an image to develop

a candidate subimage. The candidate subimage would perhaps be

further preprocessed by applying an edge-detection algorithm.
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All of these preprocessing steps would be carried out sequen-

tially in the first process shown in Figure 5.6. In the subse-

quent encoding process shown in that Figure a suitable encoding

technique would be applied to the preprocessed image. In the

first example, suppose that the raw image plane contains the

top view of a small isolated building as a high illuminance

• !rectangle of relatively small size contrasted against a dark

background representing a highly vegetated region. Preproces-

sing by luminance thresholding followed by edge detection would

reveal an image composed of a rectangle line drawing. Encoding

this line drawing by either a raster scan or Freeman encoding

technique would result in a relatively simple symbolic descrip-

tion of the rectangular shape. Figure 5.7 illustrates the

Freeman chain-encoded symbol stream. Based directly on the

symbol stream both the shape (rectangular) and area can be

determined directly, as shown in the final process of Figure

5.6. If these attributes are sufficient to imply an isolated

* building structure (based perhaps on a priori knowledge of the

types of targets expected in the image) then the small rectangu-

lar area can be positively identified immediately as an isolated

building structure.

Figure 5.8 illustrates a subimage obtained from one of the

aerial photographs made available under the research contract.

Superimposed over the photograph is a clear rectangular grid

used in manually performed encoding operations on the image.

Figure 5.9 is an expanded view of the same scene, but it repre-

sents the result of preprocessing steps that isolate the large
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Figure 5.7. Chain Encoded Image Stream
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complex high intensity structure represented by the runway,

service road, ramp pattern followed by an edge detection algo-

rithm that limits the product image to a line-drawing output.

Here the high intensity pixels representing the outline of the

airport geometry would be displayed on a dark background. Shown

also in the Figure are "tick-marks" along the line drawing that

represent sampling points where encoding will be performed.

These "tick-marks" were placed entirely randomly here, but in

a realistic situation the sample points would be adjacent pixels

in a rectangular array. As a result, there would immediately

be introduced a measure of irregularity in an otherwise straight

line due to the finite pixel size in the image. Therefore, the

sample points shown are only for demonstration purposes.

The first encoding scheme applied to the line drawing

sample points is a raster scan code. In this encoding process

the X and Y coordinates of high intensity pixels are merely

read sequentially into a vector. The vector may be either used

to reconstruct the line drawing at a receiving site, or in this

case it may be used in a pattern-analysis to determine its shape

or some other key attribute. Table 5.3 illustrates the raster

scan result. Here only every fourth point was encoded.

In a second effort the same sample airport line drawing

geometry was chain encoded using the Freeman encoding scheme

with eight levels of angle encoding. Shown in Table 5.4 is a

partial symbol output vector. The vector may be read by simply

linking subsequent columns in the table. Several symbols appear-

ing in the table should be defined for the reader. First, the
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Table 5.3

Raster Scan Encoding of Sample Airport Geometry

X YI Y2 Y3 Y4 Y5

1 33 36 38

2 34 36 38 96 97

3 35 36 39 95 98

4 36 37 40 93 99

5 37 37 40

6 38

7 39

8 40 38 42 87 93 95 99

9 41

10 42

11 43

12 44 36 40 43 47 82 88 95 100

13 45

14 46

15 47

16 48 33 44 46 50 77 84 95 100

17 49

18 50

19 51

20 52 29 41 50 54 72 79 96 104

21 53

22 54

23 55

24 56 25 36 54 58 68 74 86 90

25 57

26 58

27 59

28 60 20 32 58 69 87 89 97 100

29 61

30 62

31 63
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Table 5. 4

Chain Encoding of Periphery of Airport Line Drawing

1 2 3 4 5 6 7

1 A 5 7 6 5 4 ZA 6

2 7 6 8 4 M 3 M

3 M 5 7 M 2 3 19 ZD
4 13 6 8 7 U 3 2 5

5 8 1 7 3 M 3 4

6 M 2 8 M 2 4 M

7 2 1 7 14 2 5 16

8 1 2 8 S 1 4 6 5

9 2 1 8 M S 7 5

10 M 2 8 38 S 8 7

11 12 1 1 8 7 7 8

12 8 2 M M 8 7 M

13 M 1 3 7 M 5 16

14 2 2 2 6 2 M 6

15 2 1 M 5 5 50 5

16 M 1 2 7 M 3 M

1 17 2 1 q 3 M 3 M 12

18 1 8 7 4 zz4 4

19 M 7 10 1 3 1 3

20 7 8 8 M m M 2

21 8 M M 8 5 7 M
22 6 8 4 2 1 3 7

23 6 6 1 3 2 5 3

24 5 5 6 3 3 M 4

25 6 8 8 1 4 7 M

26 5 7 R 2 M 4 4 ZB 2

27 6 8 M 3 3 3 5 zE

28 5 7 2 3 3 M 6

29 7 8 3 M 3 7 M

30 5 7 4 T 4 Z 13

31 6 8 6 4 4 5 ZeAE



104

implementation of this algorithm assumes that a contour follow-

ing algorithm is employed. Code symbols may therefore include

stop and start points. "A" is a starting point and "AE" repre-

sents an end point. In addition, a run symbol "M" was included

to reduce the length of the vector when multiples of a symbol

are deduced by the encoder. The small letters occurring in the.1
table refer to benchmark points that are shown in the original

line drawing. These are included only for reference purposes.

It is interesting to note that the chain-encoded portions of

the vector representing the long straight sides of runway sur-

faces are interspersed in other segments that represent signi-

ficant detail. If this attribute--"long ribbon, etc." is a key

attribute, then a significant amount of processing of the en-

coded symbol string will likely be necessary to extract the

desired attribute. Although this encoding scheme does not pre-

clude further use in the context of identification, the struc-

ture is not such that the encoding emphasizes the key attribute

identified above. If, on the other hand, the key attribute of

interest is total high intensity (paved) area, then the chain

encoding scheme may be considered appropriate, since area

measure is very straightforward in the the chain encoded format.

Table 5.5 illustrates an output that would be obtained if

Hough transformation were applied to the line drawing, followed

by a threshold on the counts obtained in the quantization bins.

Assumed here are fairly small levels of quantization. Shown in

the Table are three numerical entries in each column. The

column is headed by a letter that identifies the straight line

in the original figure that resulted in the Table entry. The
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upper figure is the bin count, the number under the symbol is

the angular bin number (angle of line) and the number under the

symbol is the value of rho in the BIN (perpendicular distance

from origin). The Table not only indicates the relatively long

lines (high bin count), but it also indicates those of relatively

equal length (possibly representing long ribbonlike structures--

roads or runways). It also offers information, as noted in

Chapter II, that will allow a computation of distance separating

the lines (road width or runway width). For example, by merely

consulting Table 5.5 the reader can immediately determine that

lines A, B, C, and D are long and parallel. Furthermore, by

observing the value of rho he can observe that lines A and C

are separated widely (indicating a wide expanse--perhaps a run-

way) and that lines B and D are narrowly separated (indicating

perhaps a narrow road or taxiway).

In the latter case the Hough routine is immediately recog-

gnized as a valuable encoding tool because it possesses the

characteristic that it serves to emphasize a key property that

is of importance in identifying the target of a particular class.

Chain encoding, while of some value, would require additional

processing subsequent to the encoding to extract the key attri-

bute, and raster scan encoding would likely be of even lesser

value.

The Airport Recognition Problem - Cues and Attributes

Introduction

An airport is a striking target, easily identified by the

human observer in the type of aerial photograph available to

this study. Because of this observation, it seemed that this
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type of target structure apparently offered a rich set of cues

or attributes with which to identify the nature of the target.

The objective of this effort was to identify and document those

attributes and to formulate a methodology, algorithms, and soft-

ware to perform the identification process.

Before further researching the problem, several notions

regarding the target geometry were intially considered as pos-

sible tools for use in the identification process. In some

respects these tools or attributes appear to be valid across

the board as several diverse airport structures are considered.

Given the limited data base available, a more complete set of

aerial data was obtained and studied to identify more accurate

target attributes.

Much of the thrust of preceding efforts has used geometry

as a primary means of sorting or identification. This thrust has

influenced the current efforts in that geometry was considered

again as a prime candidate in investigating the means necessary

to perform the airport identification process. It appears,

however, that other cues may also become extremely valuable in

the identification process. A decision tree application to

the airport decision problem will be identified and described

] in a subsequent discussion. One important attribute identified

in the decision tree is the extremely large area, smooth, uni-

form intensity runway surface. Although not a positive means

of identification, these attributes can increase the probability

of a correct decision when coupled with other features.
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Airport Characteristics - A Description

One method for identifying objects or "targets", as they

will be called in this discussion, is to simply create a mask

or template using a known geometry or some other known attri-

bute. Such a technique is extremely applicable in the case of

an optical character reader equipped to read characters from a

fixed character font. In this case the target set is a fixed

controlled set known a priori to the character reader. The

primary problem for the character reader is then that it must

distinguish one character from another. Generally, all of the

targets confronting the character reader will come from the

fixed character set, a well known, well characterized number

of target objects.

In the current study the situation is somewhat different.

Here the "reader" may confront any one or more of a large, al-

most unbounded, number of targets. Some of these targets may

be from the list of "important" targets identified a priori to

the reader, but other items may be unknown. Many target candi-

dates may be large in scale, as in the case of the airport,

and other candidate targets may be very small, as in the case

of isolated building structures. Therefore, even the field of

view and orientation with respect to the target in the airport

identification will be unknown a priori.

The airport identification problem--indeed, the problem

of identifying most of the structures in the list of important

targets--is further complicated in that the targets are generic

or functional structures rather than specific descriptions that
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possess specific characteristics. A simple target like a single

isolated building, for example, may vary in both size and shape.

It may even have a black roof or a highly reflective roof, yet

it is said to belong to a single class called "detached buildings.u

The same is true of the airport structure. Some major airports

will include several landing strips, parallel taxiways, and

immense aprons, while others will be more compact. One propo-

sition put forth in early discussions is that a basic structure

is that depicted in Figure 5.10. One candidate in the Figure

shows three large landing strips, roughly in a triangular pat-

tern, crossing one another at random acute angles. The second

shows a simple crossed-V shape. Such a geometry, if applicable,

could be encoded and identified based on code symbol character-

istics. The identification scheme, it was postulated, could

be sufficiently general so as to accept variations in specific

runway lengths and intersection angles.

Before continuing along these lines it was imperative

that actual target characteristics be investigated so as to

ascertain their specific nature. Such a procedure is necessary

in the case of generic or functional targets because they take

so many forms. The extraction of features (or attributes) thus

becomes a necessity; template-matching is ruled out. Expressed

in words, such a feature may be, for example, "long, wide,

straight ribbons of concrete." This attribute must, of course,

be capable of representation in machine form, and the words

"long", and "wide" must be reduced to some numerical range

that can be tested.
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a) Candidate 1

b) Candidate 2

Figure 5.10. Proposed Model Airport Geometries
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Before examining specific examples and identifying speci-

fic attributes, we should examine some ideas that were proposed

in the context of the complete cartographic target set. This

is important since a major objective of this program is to

classify targets. In the discussion regarding the categorization

of the targets into classes as a means of developing attributes,

the airport structure was identified as a "complex" structure in

that it incorporates road and highway-like structures and that

it also incorporates buildings and parking facilities. Often

major airports are located in relatively rural areas, although

some examples can be cited where large cities include landing

fields within their boundaries just adjacent to large urban

concentrations. One method that could be used to identify an

airport would be to identify its fundamental components (i.e.,

runways, taxiways, hangars, parked aircraft, parking lots,

administrative and support buildings), then to make a decision

based on whether or not the image contains a sufficient set of

*the above attributes as identified in a previous set of decision

processes. Such a process is shown pictorially in Figure 5.11.

It is fundamentally a process based on concepts of syntactic

pattern recognition. For each of the fundamental structures

runway, hangar, etc.) an identification procedure would be

applied to the image. A syntax of geometrical constructs

(angles, long straight sides, etc.) would be appropriate to

identify some of the candidate components of the airport struc-

ture. Other structures would be identifiable based on intensity

or texture measures. Then at the next higher level of decision-
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making, component descriptions would be used as inputs to the

final decision regarding the complex structure. Such a bottom-

up approach could also be used to identify urban areas, start-

ing first by identifying component structures in an image, such

as buildings and streets. This differs from the top-down approach

where, for example, a texture measure may be used to determine

if an image depicts an urban or a rural area simply by looking at

the general textural measures of a large image and then directly

concluding from it the nature of a complex target like an urban

area.

The technique adopted as a result of this study may be

regarded as a variant of the bottom-up approach in that several

characteristic attributes of the airport structure have been

identified, and these are used as intermediate decision points

in the overall decision process. Other components that have not

been currently considered in the logic tree structure for the

airport problem have been what are considered secondary and

tertiary cues like buildings and parking lots. Table 5.6 in-

cludes several cues that have been identified as characteristic

of most airport structures. These have been developed based

on observation of sample image characteristics and direct

observation of airport geometries and characteristics from

the air.

Figures 5.12 through 5.21 are line drawings of ten random-

ly selected airports from an official document published by the

Air Traffic Service of the Federal Aviation Administration.

The document provides major airport visual outlines and brief
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Table 5.6

Characteristics of Airport Structures

- One or more (1-5) runways

- Runways are long but of limited (abrupt end) length

- Runways are extremely straight and uniform

- Most airports include secondary roadlike structures as
aprons and taxiways

- Runway width often exceeds that of standard roads

- Airports are on relatively flat land

- Airports are accessible by roads

- Runways are concrete--white and highly reflective

- Most airports include buildings for airport administration
and hangars

- Most major airports include large parking facilities

- Often the region enclosed by the runway and taxiway surfaces
is of uniform texture, charactreristic of low cut vegetation
to facilitate ground visbility
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descriptions for all major airports, both U.S. and international.,

The data in this document provide a convenient single source for

characteristics like typical runway width and length, number

of runways, apron geometry, and even runway slope. Although

the ten presented here were selected randomly in terms of

specific location, the complexity of geometry was reviewed and

used as a selection device in order to obtain a wide range of

shapes. The wide range of geometries displayed in the volume

is perhaps one of its most interesting characteristics. The

majority of the line drawings displayed in the figures are for

airports located in the continental United States. These are to

a large extent indicative of the images that may be constructed

as the result of the application of an edge detection algorithm

to the topographic images proposed for processing in the

current study.

The specific airport locations depicted in the Figure are

as follows:

Figure No Location/Designation

5.12 Yap
5.13 Pago Pago International
5.14 Eielson AFB
5.15 San Diego International
5.16 Cold Bay
5.17 Tampa International
5.18 Baltimore-Washington International
5.19 Cleveland-Hopkins International
5.20 Dallas-Ft. Worth Regional
5.21 Kennedy International

The figures are arranged in a generally increasing order

of geometrical complexity, starting with Yap location, which

features only one long strip of moderate length (4,832 feet),
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and ends with perhaps one of the most complex airport geometries

in the world, John F. Kennedy Airport in New York. The latter

features five operational runways ranging from 2,560 to 14,572

feet in length. The array of taxiways, aprons, and support

roadways is extremely complex. These elementary components are

both long and straight and curved in nature.

These figures illustrate the wide range of sizes, geo-

metries, and complements of facilities that can be aggregated

to form the functional unit that can be ascribed to the class

generally called "airports." From these figures, however,

several very valuable observations can be made regarding general

attributes. In general, these attributes when used in conjunc-

tion with one another, form a set unique to the generic airport

geometry and thus provide characteristics that can be used to

uniquely identify an unknown image if that image is indeed

that of an airport. The primary objective here is to identify

a small set of unique attributes that occur often in an airport

geometry and concurrently do not occur often in images.

Scme of the major characteristics of the ten selected

facilities are shown in Table 5.7. At the top of the table is

the simplest facility, which is merely a simple single rectang-

ular strip 100 feet in width, 4,832 feet in length, with straight

ends, no taxiways, and a simple terminal facility located at

approximately the 60/40 point along the strip. The facilities

become increasingly complex as the entries become lower in the

chart. The most complex entry, Kennedy International, New York,

contrasts greatly with the first entry. As an indication of
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the degree of slope in these typical airport structures, the

most level facility exhibits zero longitudinal slope over its

two mile runway length and the worst exhibits a 0.5% longitudi-

nal slope (45 feet over its 9,000 foot length). Since the larg-

est facility, Kennedy International, exhibits the most complex

structure, it serves to indicate the characteristics that can

be used for identification purposes and includes many secondary

characteristics that must be overlooked if the identification

alogrithm is to be successful. (More specifically, the algo-

rithm must suppress those characteristics that do not play a

part in providing decisions as the decision process is carried

out.)

These latter characteristics may be identified for the

purposes intended here as extraneous to the identification pro-

cess. If, for example, a key characteristic that cuts across

all of the facilities is identified as "runway(s) with an

extremely straight character and of limited length", then

other characteristics of the complex target may be regarded as

noise. Connecting taxiways and service roads or aprons that

may connect to the main runways are examples of these extraneous

attributes when viewed in the context of the single attribute

identified above. This discussion and the more complex facility

* descriptions (Figures 5.19, 5.20, 5.21) illustrate the necessity

for processing or encoding of the image or one of its transformed

products with a technique that is designed to select effective

features. The generic nature of the airport configuration, and

the need to develop techniques that emphasize key attributes
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heavily affects the selection of encoding schemes that may be

considered for use in conjunction with the target recognition

process. This area of interest is addressed in greater detail

elsewhere in this report. Several encoding techniques, to in-

clude raster scan encoding of the raw image and Freeman encoding

of the line drawing produced by an edge detection algorithm,

were considered during the course of the period by looking at

an empirical characterization of candidate images. The conclu-

sion of this brief effort was that in the very complex facility-

related images these techniques tend not to deemphasize the

detail associated with the image complexity. The result is a

very complex encoded characterization that includes the key

attribute(s) of interest as well as a large amount of extraneous

information mixed into the key data stream. The type of charac-

terization forces the subsequent analysis steps to carry the

burden of sorting out the key attribute data.

It is particularly important to emphasize the points elucidated

in the paragraph above, since on the one hand an objective of

the study was to investigate the opportunities that could be

obtained from image encoding in the image identification con-

text. On the other hand the major objective was to investigate

identification schemes appropriate to the targets of interest.

, A general conclusion here is that in the case where the target

is a complex generic target, the types of encoding schemes

that were investigated in this study are of limited value. If,

on the other hand, the definition of encoding is extended to

include processes like the Hough transform, then encoding can
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be considered a useful technique in the overall target identif-

ication process. As a matter of fact, the Hough transform

technique is particularly useful in the airport identification

process because its characteristics allow the emphasis of a key

attribute in the airport problem--the long, straight, abruptly

terminating runway and taxiway surfaces, while deemphasizing

edges that do not contribute.

Let us consider the key attributes that have been identi-

fied as indicative of an airport facility regardless of the

complexity and level of detail associated with the overall

structure. These are identified as follows:

* One or more Runway Surfaces

* Two or more pairs of Edges

* Edges lie along extremely straight lines
* Line length 4,000 - 15,000 feet long

Edge pairs 75-200 feet apart (150 feet
appears most likely)

* Other edge pairs parallel to the first
May be of lesser or equal width
(Taxiways vs parallel runways)

* Most major airport facilities include
paved areas of 500,000 square feet as a
minimum; large scale airports contain
5,000,000 square feet of paved areas as
a minimum

< I; ..... .{
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These very simple characteristics are present in all of

the facilities identified here and certainly do not include

many of the available cues identified earlier. They are,

however, implemented easily and would appear to be effective

features due to their unique character with respect to the

other types of candidate targets expected in the images.

Implementation

The requirements for analysis and an algorithm resulting

from the characteristics identified in the preceding paragraphs

are very similar to those identified in the earlier bridge

related analysis. Of particular importance are the require-

ments to identify long (4,000 - 15,000 feet) parallel lines in

the images and to determine their separation distances. The

Hough transform and the algorithms developed in support of the

bridge identification effort will require minor alteration to

allow this analysis using tools that are available. It is

necessary that the edges representing the runways be exposed

to a very fine degree of angle and intercept quantization to
assure that the edge that is under investigation is indeed a

straight edge as is characteristic of the airport runway sur-

face. End points in the space domain must be recorded during

the analysis to assure that the long parallel edges do span

distances in the 4,000 to 15,000-foot ra ge, and that the ex-

tent of the span(s) is indeed finite and ends abruptly. The

inverse Hough routine described above maR prove useful in

carrying out the analysis related to the determination of

abruptly terminating spans.
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Analysis with respect to the extremely large paved sur-

face area will be facilitated by the fact that most airport

surfaces are constructed of concrete to enable them to support

aircraft. These areas will be large (greater than 500,000 ft2

and extending up through 10,000,000 ft2 ) and will include

the regions identified in the Hough portion of the analysis as

potential runway surfaces. The extent of the large area target

(bounding rectangle) in terms of coordinates will be roughly

15,000 by 15,000 feet. The analysis here will require thres-

holding of the raw image followed by a routine that will

examine the sizes of the regions of uniformly high intensity.

Ir
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER WORK

Conclusions

Progress has been made during the past year in the devel-

opment of computer techniques to extract items of cartographic

interest from aerial photographs. The problem as originally

4 posed was the construction of a system that can perform auto-

matic or semi-automated cartographic analysis; a number of

subsidiary problems were identified that provided the pattern-

recognition framework for the overall problem. To date we have

examined two types of man-made cartographic objects--bridges

and runway configurations--in a variety of surroundings. Re-

sults were good, indicating that it is possible to locate

accurately those objects in the image, using a combination of

edge-detection and transform techniques and certain a priori

information about the two types of objects.

The success to date provides support for the use and en-

hancement of the Hough transform as a locator of lines and line

segments; since lines often characterize man-made cartographic

objects, there is value in further development of that tool.

The use of a large number of picture segments, coupled with a

133



134

variety of object/area types is necessary for completion evalua-

tion of that approach to feature extraction.

The medial axis transform has been refined for use in the

discrete case and is expected to be valuable in representing

largearea types of objects (as opposed to bridge and runway

targets).

The success of various features used in recognition of

cartographic objects depends in part on the spatial resolution

and intensity quantization of the digitized image. Although

the present values of resolution and quantization are adequate,

it may be that less of either or both would also be adequate;

in cases where memory is limited one many have to make a trade

between number of pixels and number of gray levels per pixel.

The effect of such a trade on the effectivness of various

features is unknown.

Interesting and Important Problems

It quickly becomes clear that pictures can be expressed

as syntactic structures, composed of multiple occurrences of

members of a small set of primitive shapes. Cartographic

images can be expected to have a set of elementary components

that can be combined into strings the parsing of which will

yield the classes of the objects of interst. The problem is

to identify such a set and demonstrate its practicality and

accuracy.

The degree of invariance of features as the tradeoff

(for fixed memory size) between number of pixels and number of

levels occurs can be measured by a sensitivity analysis. It
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will be of great theoretical and practical value to know where

resources (both memory and computing) should be devoted. Fur-

ther, depending on the cartographic item of interest the

allocation of resources may be changed during processing. Part

of this problem is affected by the goal of removing redundancy;

as noted in this report, a homogeneous area of large size need

not have all of its component pixels identified individually,

which would allow a compact representation to guide the feature

extraction.

Classifier design (except for the case of a syntactic

approach) is a worthwhile area for study because it uses what-

ever information is available from the features to partition the

space to minimize the probability or the expected cost of mis-

classification. One approach uses features sequentially, thus

computing them only as needed to reach a preset level of error

probability. Methods exist that are optimal in the sense that

the number of measurements required is the minimum necessary

to achieve the specified error.

It is essential to extend the work already done to new

types of objects, to larger numbers of them (to obtain good

estimates of classifier performance), to a variety of back-'II
grounds and qualities of photographs, and to imagery of other

kinds (radar, infrared, etc.).

. . . . . .i. ... .. . .. il . . .. .. .. ..
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I PROGRAM HOUGHTRAN
IMPLICIT INTEGER*2 (IPJPKPLPMPN)

-THIS SECTION REQUESTED THE PARAMETERS NEEDED BY THE VARIOUS
-ROUTINES OF THE PROGRAM.

CHARACTER*1 IANPNTY, IAN2
CHARACTER*5 FNTWO
CHARACTER*9 FNAME

-THE NEXT 2 LINES ASK IF THE USER WISHES TO PROCESS INTER-
-ACTIVELY (ON 1 SUBIMAGE AT A TIME) OR AUTOMATICALLY (PROCESS
-ENTIRE IMAGE WITHOUT USER INTERACTION)*

1 WRITE(6,*)'PROCESSINO MODE (0=INTERACTIVEP 1=AUTOMATIC)'
READ(S,*) MP
WRITE(6,*) 'QUANT.LEVELS OF RHO(("256)I THETA(<13)'
READ(5t*) LRPLA
WRITE(6?*) '# OF ROWS(<256) AND COLS (<256) TO PROCESS'
READ(5p*) NXNY
WRITE(69*)'WINDOW SIZE FOR GLOBCON TEST (DEFAULT7)#*
NW=7
READ(5p*) NW
NW=(NW-1)/2
IF(MP.EO.1) GO TO 2

-THE FOLLOWING ASKS WHAT OUTPUT TO PERFORM DURING ROUTINE
*WRITE(6t*) 'DISPLAY EDGE FIELD? (YIN)'

-IF '*' IS ENTERED, THE RESULTS OF EDGE DETECTION IS OUTPUT
READ(5i500) NTY

500 FORMAT(A1)
* WRITE(6v*) 'DISPLAY HOUGH TRANSFORM MATRIX? (Y/N)'

-IF 'Y', THE TRANSFORM MATRIX IS OUTPUT
READC5P500) IAN2
WRITE(6p*) 'DISPLAY INVERTED TRANSFORM? (Y/N)'

-IF'Y'p INVERTED TX DISPLAYED SUPERIMPOSED ON EDGE FIELD
READ(5,500) IAN

-THE FOLLOWING REQUESTS THRESHOLDS FOR VARIOUS TESTS INVOLVED
-IN EXTRACTING LINES, BRIDGE CANDIDATES, AND BRIDGES

*2 WRITE(6,*)'FOR FOLLOWING THRESHOLDSP ENTER 0 FOR DEFAULT'
WRITE(6p*) 'EDGE DETECTOR THRESHOLD (DEFAULT=5000*0):'

* READ(59*) AX
IF(AX.EO) AX-5000#O
WRITE(6p*) 'MATRIX INVERSION THRESHOLD (DEFAULT-10):'
READ(5p*) IG

WRITE(6,*)'PARA*LINE SEPAR. THRESHOLD(DEFAULT=5 PIXELS)'
READ(5p*) ST
IFCST.EO.O) ST-5*O

* WRITE(6,*)'MAX*LINE PAIR OFFSET (Z OF AVG LNTHiDEFAULT.*5)'
READC5p*) OT
IF(OT*EQ*O) OT=O.5
WRITEC6t*)'MAX LENGTH DIFFERENCE(% OF AVG LGNTH)CDEFAULT-0*5)t'
READC5p*) DT

* IF(DT#EO.O) DT=O.5
* WRITE(6t*)'UNIFORMITY THRESHOLD FOR BLOBCONCDEFAULT15*O)t'

READC5p*) BT
IF(BT.EG.O) BT-15#O

Appendix 3.3. Bridge-Detection Program
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3 WRITE(6,*) 'INPUT FILE NAME (5 DIGITS; IE, PIC05)'
READ('5501) FNTWO

501 FORMAT(A5)
FNAME=FNTWO//'.DAT'
WRITE(6,*) 'INPUT RECORD LENGTH'
READ(5,*) LH
IF(MP.EQ.) GO TO 20
WRITE(6,*)'STARTING COORDS(UPPER-LEFT CORNER, ROWCOL):'
READ(5,p*) IXIY"

-IMAGE TO BE OPERATED ON IS READ INTO MEMORY
CALL RIM(NXNYIXIY,FNAMELHBR).

-HOUGH TRANSFORM IS PERFORMED
CALL HOUGH(LRLAIXIYNXNYAXpNTY)

-MATRIX IS OPTIONALLY DISPLAYED
IF(IAN2.EO.'N') GO TO 4
CALL MATRIX(LRPLA)

-THE TRANSFORM IS INVERTED (IE, LINES ARE EXTRACTED)
4 CALL INVERT(LRLAPIGIXpIYNXPNYIANN)

-CANDIDATES ARE EXTRACTED AND TESTED USING GLOBCON
CALL PARLINES(NpIXIYSTOTPDTBTFNAMELH,'Y',ONW)
GO TO 5

-THE FOLLOWING SECTION PROCESSES AN ENTIRE IMAGE WITHOUT
-FURTHER INTERACTION BY CALCULATING EACH SUCCEEDING SET
-OF STARTING COORD'S AND USING THE VALUES ENTERED ABOVE.

20 WRITE(6,13)
13 FORMAT('O','CTR(XY) ANGLE LNGTH WIDTH #LINES RESULT')

DO 15 K=2,1024,NX
NY2=NY
NX2=NX
DO 15 J=2,LH-2,NY
IF((LH-J).LT.NY) NY2=LH-J
CALL RIM(NX2,NY2,KJFNAMELHBR)
IF(NX2.EQ.0) GO TO 5
CALL HOUGH(LRLAIXIYNX2,NY2,AX,'N')
CALL INVERT(LRLAIGIXIYNX2,NY2,'N',N)

15 CALL PARLINES(N,K,JSTOTDTBT,FNAMELH,'Y',INW)
5 WRITE(6,*)'NEXT PROCEDURE: ENTER 1-DIGIT CODE'

WRITE(6,*) ' 1) PROCESS ANOTHER IMAGE-NO CHANGES'
WRITE(6,*) ' 2) PROCESS ANOTHER IMAGE-NEW THRESHOLDS'
WRITE(6,*) ' 3) PROCESS ANOTHER IMAGE-NEW OPTIONS'
WRITE(6,*) ' 4) STOP'

-IF '1', ONLY IMAGE FILE/COORDS ARE REQUESTED. IF'2', NEW
-THRESHOLD VALUES ARE REQUESTED ALSO* '3' RESTARTS PROGRAM*

READ(5,*) NPROC
GO TO (3,2,1,99),NPROC

99 STOP
END
SUBROUTINE HOUGH(LRPLAIXPIYNXvNYPAXPNTY)
IMPLICI INTEGER*2 (IJKPLMN)

-THIS ROUTINE PERFORMS A 'FAST' HOUGH TRANSFORM (DUE TO
-O'GORMAN I CLOWES) ON THE IMAGE ARRAY 'R'. FEATURE POINTS
-TO TRANSFORM ARE GENERATED BY A 3X3 EDGE DETECTER MASK.
-THE TRANSFORM IS 'FAST' SINCE ONLY A SINGLE RHO/THETA CELL
-IS INCREMENTED PER FEATURE POINT--THAT ONE CORRESPONDING TO
-THE ANGLE RETURNED BY THE EDGE DETECTER.
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COMMON R(256,256)/HUFF/HF(13,256,4),NTOT(256),XX
COMMON /CH/IMG(256,256)/LT/A(13,3),PI
INTEGER*2 HF,R,RHO
CHARACTER*1 IMG,NTY
PI=ATAN(1.0)*4.

-INITIALIZE THE RHO/THETA MATRIX:
DO 1 K=ILR
DO 1 J=lPLA
DO I L=I,4

1 HF(JPK,L)=O
IF(NTY.NE.'Y') GO TO 99
WRITE(6p98) IXIYPAX

98 FORMAT('O','EDGE FIELD, COORDS',2I5,' THRESHOLD=',FB.1)
-XX, CALCULATED IN THE NEXT STEP, CONVERTS RHO (DISTANCE)
-TO 'RHO', THE BUCKET NUMBER.

99 XX=(LR-1.)/(NX+NY)
-THE NEXT 10 LINES DEJELOP A 'LOOK-UP' TABLE TO FACILITATE
-THE CALCULATION OF THE RHO/THETA BUCKET FOR EACH POINT.

DO 4 K=ILA
A(K,1)-(K-1)*PI/LA
A(K,2)=A(K,1)
A(K,3)-l
-IF(A(K,2).LE.(PI/4.).OR.A(K,2).GE.(.75*PI)) GO TO 3
A(K,2)=(PI/2.)-A(K,2)
IF(COS(A(Kl)).LT.O) A(Kp3)=NX*XX+1
GO TO 4

3 IF(COS(A(KP1)).LT.0) A(K,3)=NY*XX+
4 CONTINUE

-THE REMAINDER PERFORMS THE TRANSFORM. FOR EACH PIXEL, THE
-EDGE OPERATOR 'EDGOP' IS CALLED, WHICH RETURNS AN EDGE
-INTENSITY B2, ANGLE A2, AND A THIRD VALUE 'IS' WHICH IS
-+1 IF A2 IS BETWEEN 0 & PI, AND -1 IF A2 IS BETW. PI I 2PI.
-B2=0 IF THE PIXEL IS NOT AN EDGE (IE, FEATURE) POINT. THE
-CORRESP. L/RHO BUCKET IS THEN CALCULATED. LINES ARE HANDLED
-SLIGHTLY DIFFERENT DEPENDING ON ITS ANGLE: THOSE BETWEEN
-PI/4 AND 3PI/4 CALCULATE RHO AS A HORIZ. AXIS INTERCEPT.
-THOSE < PI/4 OR >3PI/4 USE THE VERT. AXIS INTERCEPT AS RHO.
-LINES WITH ANGLES >PI/2 (NEG. SLOPES) MUST HAVE EITHER NX OR
-NY ADDED TO RHO IN ORDER THAT RHO 'BUCKET NUMBER' NEVER BE
-NEGATIVE. THIS PROCEDURE DIFFERS FROM THE MORE COMMON USE
-OF RHO AS THE PERPENDICULAR DISTANCE OF ANY LINE TO THE
-ORIGIN, BUT HAS THE ADVANTAGE OF NOT GIVING SPURIOUS 'SPLIT'
-LINES DUE TO IMAGE DIGITIZATION.
* DO 5 K=INX

DO 5 Jil,NY
5 IMG(KJ)'" I

DO 15 K=lNXI DO 10 J=INYCALL EDGOPCJ+IK+IAXB2,A2,IS)

IF(B2oEQO0) GO TO 10
IMG(KPJ)n'*'
LsA2*LA/PI+I
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-BESIDES THE USUAL INCREMENTING, EACH RHO/THETA CELL KEEPS 2
-OTHER VALUES: THE AVERAGE X VALUE (A2 >3P1/4 OR <P1/4) OR
-Y VALUE (PI/2-<A2<3PI/4) FOR THE 1ST 3 PTS AND FOR ALL PTS
-ALONG THAT LINEO(THESE ARE USED LATER TO ESTIMATE ITS CENTER
-AND LENGTH); THE 3RD ADD* VALUE SUMS THE 'IS' VALUESP THUS
-INDICATING IF THE LINE IS PRIMARILY 'POSITIVE'(O-PI) OR
-'NEGATIVE"(PI-2*PI)*

RHO=(J*SIN(A(Lvl))+K*COS(A(Lp1)))*XX/COS(A(LP2))+A(L,3)
IV-J
IF(HF(LrRHO?3).GT.3170O) GO TO 10
HF(CLPRHOP,1)=HF CLPRHO,1) +1
IF(A(L,).GT.(PI/4.).AND.A(Li).LT.(.,75*PI)) IV-K

*HFCLpRHOv3Y=HF(LvRHOt3)+IV
IF(HF(Li'RHOvl)*LE*3) HF(LPRHOP2)=HF(LPRHOv2)+IV

*HF(LvRHOP4)-HF(LPRHO,4)+IS
10 CONTINUE

-DISPLAYS THE JUST-PAST LINE OF EDGE POINTS IF NTY='Y'.
IF(NTY.EO.'Y') WRITE(6v*) (IMG(KvJ),J=1,NY)

15 CONTINUE
RETURN
END
SUBROUTINE EDOOPCJKAXPB2vA2vIS)

~T~IMPLICIT INTEGER*2 (IPJPKLMN)
-HSROUTINE IS A MODIFICATION OF THE 'SOBIEL' EDGE OPERATOR.

-IT USES THE WEIGHT SORT(2) (DUE TO FREI I CHEN) RATHER THAN
-2-RESULTING IN UNIFORM PROD OF EDGE DETECTION FOR ANY ANGLE.

COMMON R(256,256)/LT/A(l3,3),PI
INTEGER*2 R
E-R(K-1 vJ-1 )-R(K+1 ,J+1)
D-R(K-lpJ+1)-R(K+IJ-1)
F-E+D+1*414*(R(K-lJ)-R(K+1,J))

B2-F**2+G*K2
IF(B2.LT.AX) 32=0
IS-I

-'IS' IS SET TO -1 IF THE ANGLE IS BETWEEN PI AND 2*PI.
IF(G.LT.0) IS--l
IF(F*EQ.0) GO TO 2
A2=ATAN2(GF)

-THE NEXT LINE SHIFTS RANGE FROM (-PI/2vPI/2) TO (0,PI)
IF(A2#LT.0) A2=PI+A2
GO TO 3

2 A2in(PI/2#)
3RETURN

SUBROUTINE MATRIX(LRLA)
*IMPLICIT INTEGER*2 (IJPKPLPMvN)

-THIS ROUTINE DISPLAYS THE RHO/THETA 'INCREMENT' CELLS.
COMMON /HUFF/HF(13,256v4)pNTOT(256)rXX
CHARACTER*3 DASH

INTEGER*2 HF
1 1E6p) J 1aI A)

DASHN'---'
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WRITE(6,2) CDASHPJ=IPLA)
2 FORMAT(' 'v9Xv20A3)

DO 5 K1lpLR
5 WRITEC6,6) KP(HF(LvK,1),L=1ILA)
6 FORMAT(' ',I4t4Xv2OIS)

RETURN
END
SUBROUTINE RIM(NXPNYPIXPIYPFNAMEPLHPBR)
IMPLICIT INTEGER*2 (IPJPKPLvMPN)

-THIS ROUTINE READS IN AN IMAGE OF LENGTH LHP LOCATED IN
-FILE IN* 'NX' ROWS DY 'NY' COLUMNS (STARTING WITH UPPER

-LEFT PIXEL (IXPIY) ARE STORED IN THE INTEGER*2 ARRAY 'Ro.
COMMON R(256,256)
INTEGER*2 RvBR(LH)
CHARACTER*9 FNAME
OPEN(ACCESS='DIRECT' ,NAME=FNAMETYPE='OLD'v UNIT=21)
DO 5 K=IX-1,IX+NX
READ(21'KiEND=10) DR
DO 5 J=IY-1,IY+NY

5 R(K-IX+2vJ-IY+2)=BR(J)
GO TO 20

$10 NX=K-IX+1
20 CLOSE(UNIT=21)...........

RETURN
END
SUBROUTINE INVERT(LRPLAv IGPIX2pIY2,NXPNYIANPN)
IMPLICIT INTEGER*2 (IYJPKPLPMPN)

-THIS ROUTINE INVERTS THE TRANSFORM PERFORMED DY 'HOUGH'* IT
-EXTRACTS FROM THE RHO/THETA MATRIX THOSE CELLS EXCEEDING THE
-THE THRESHOLD '16'o FOR EACH EXTRACTED CELL IT CALCULATES
-THE CENTER POINT (X&Y)p HALF-LENGTH, SLOPE I INTERCEPT, THEN
-STORES THESE IN THE ARRAY 'IL'o THE LINE IS THEN BACK-
-PROJECTED ONTO THE EDGE FIELD 'IMG' FOR OPTIONAL DISPLAY.
-THE COORDINATE SYSTEM USES THE UPPER-LEFT CORNER AS THE ORI-
-GIN, BUT IS ROTATED 90 DEGREES FOR LINES WITH ANGLES BETWEEN
-P1/4 AND 3PI/4*

COMMON /HUFF/HF(13,256,4),NTOTC256)PXX/CH/IMG(2569256)
' COMMON /LINE/IL(128,6),SLP(128),CPT(128)/LT/A(l3,3),-PI
INTEGER*2 HF
CHARACTER*1 IMG, IAN
N=O
IFCIAN.NE*'Y') GO TO 99
WRITE(6P918) IX2,IY2vIG

99 FORMAT('0','INVERTED IMAGE, COORDS'p2I5,' THRESH*=',I4)
99 DO 20 K.1,LA

DO 20 .frlLR
IF(HFCKpJ,1)*LT*1G) GO TO 20
N=N+1

ILCN,1)aHF(KJ,1)'4 ILCNP3)=HF(KPJP3)/IL(Nvl)
IL(NP5)=ABS(ILCNP3)-MF(KPJP2)/3)+l

IL(NP6)-HF(KPJP4)
CPT(N)-(J-A(KP3) )/XX
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SLP(N)=-TAN(A(KP2))
IL(NP4)=SLP(N)*IL(NP3)+CPTCN)
IF(IAN*EQo'N') GO TO 20
DO 15 m=IL(N~P3)-IL(N,5)vILCN,3)+ILCN,5)
IY=SLP(N)*M+CPTCN)
IF(M.LT.1*GR.IY*LT.1) GO TO 15
IF(A(K1) .GT. (PI/4.) .AND.A(K,1) .LT. ( 75*PI)) GO TO 13
IFCM.LE*NY.AND.IY.LE*NX) IMG(IYPM)-'X'
GO TO 15

13 IF(M*LE*NX*AND*IY.L~oNY) IMG(MPIY)='X'
15 CONTINUE
20 CONTINUE

IF(IAN.EQ.'N') GO TO 30
DO 18 K-I ,NX

18 hRITE(6p*) CIMG(KpJ)rJ=1,NY)
30 RETURN

END
SUBROUTINE PARLINES(NPIXZYPSTPOTPDTPBTPFNAMEPLHIANPMPPNW)
IMPLICIT INTEGER*2 (IPJPKPLPMPN)
COMMON /LINE/IL(128,6),SLP(128)vCPT(128)/DC/IC(128,9),1DC128)
CHARACTER*10 BRD
CHARACTER*1 IAN
CHARACTER*9 FNAIE

-THIS ROUTINE EXTRACTS FROM THE SET OF LINES GENERATED BY
-'INVERT' THOSE SETS OF LINES THAT MAY BE BRIDGES. THESE ARE
-SETS OF LONG, PARALLEL LINES OF APPROX. EQUAL LENGTH AND
-LOCATION* IF IAN-'Y', THE SURVIVING CANDIDATES ARE THEN
-TESTED BY 'GLOBCON' TO BE OVER 'WATER' AND THUS A BRIDGE.

IF(MP#EQ.1) GO TO 99
IJRrTE(6u1)

1 FORMATC'0',' CTR(XuY) ANGLE LNGTH WdIDTH #LINES RESULT')
99 DO 2 K-1,N
2 ID(K)-O

NP-0
BRD-'
DO 20 K-IrlN-1

*IPlD+(K-)*EQi1) 0O TO 20
IE-1
DO 9 J-K+1,N
IF(ILCK,2),NE.IL(J,2).ORID(J)I4E.O) GO TO 9
A=ATAN(SLP(K))
D-(COS(A)*(CPT(K)-CPTCJ) ))**2

LI AVG=IL(KP5)+IL(JP5)
X=IL(KP3)-IL(Jt3)
Y-IL(KP4)-IL(Jt4)
OF-X**2 + Y**2 - D
IF(D.GT.C9T**2).OR.OF.GT.C(OT*AVG)**2) .00G TO 9
IF(ABS(CIL(KPS)-IL(Ju5))*2.).GT.(DT*AVG)) GO TO 9
ID(K)-2
ID(J)-1
IE-IE+1
IF(XE.GT*2) GO TO 5
IF(IPl(K2.T4.N.LK2.T15 OT
NP=NP+ ).T45AD*LKP)LT15 10T

I7
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IC(NP,1)=IL(Ki3)
IC(NPP2)=IL(KP4)
GO TO 4

3 IC(NPP1)=ILCKP4)
IC(NPP2)=IL(Kv3)

4 IC(NPP3)=IL(KP2)
IC NPF4 )=IL (K,5)

5 IF(IL(Kv2).GT.45.AND.IL(Kv2).LT.135) GO TO 6
IC(NPPI)=IC(NPPI)+IL(JP3)
IC(NPP2)=IC(NPP2)+IL(JP4)
GO TO 7

6 IC(NPP1)=IC(NPPI)+IL(JP4)
IC(NP92)=IC(NPP2)+IL(JP3)

7 IC(NPP4)=ICCNPP4)+ILCJP5)
IC4NPP7)=IC(NPP7)+IL(J,1)
D=ABS(D)

8 IC(NPP5)=SQRT(D)
9 CONTINUE

IF(ID(K)*EQO0) GO TO 20

ICCNPP2)=IC(NPi'2)/IE +IX-l
IC(NPP4)=IC(NP,4)/IE * 2
IC(NPi6)=IE
IC(NPP7)=IC(NPP7)/IE
DO 13 J=lFNP-1
IF( (ABSCICCNPv1)-IC(J,1) )+ADS(IC(NP,2)-IC(J,2) ) ) GT.5)
00G TO 13

L=O
IFCIC(NPP6)*GT*ICJ'6)) L-L+1
IF(IC(NP97)oGT*IC(JP7)) L=L+l
IF(IC(NPP4)*GT*ICCJP4)) L-L+1
IF(L*GE*2) GO TO 12
NP-NP-i
GO TO 20

*12 IC(Ju6)=0
13 CONTINUE

*20 CONTINUE
DO 25 KinlNP
IF(IC(KP6)#EO.O) GO TO 25
IFCIAN.EG.'Y') CALL GLOBCON(BTFLHPFNAMEPNWPKPBRD)

~1 WRITEC6,24) (ICCKpL)vL-1v6)pBRD
24 FORMAT(' 'p14,v''p4r4I6v2XpA10)
25 CONTINUE

RETURN
END
SUBROUTINE GLOBCON(BTPLHPFNAMEPNUNPPBRD)
IMPLICIT INTEGER*2 CIPJPKPLPMPN)

-THIS ROUTINE PERFORMS A GLOBAL CONTRAST TEST ABOUT A
-BRIDGE 'CANDIDATE'* IT COMPARES THE UNIFORMITY WITHIN
-LA NW X NW WINDOW AT PTS ON EITHER SIDE OF THE 'BRIDGE'* IF
-THE UNIFORMITY OF BOTH SIDES ARE BELOW A THRESHOLDCBT)
-AND THE MEAN BRIGHTNESS ON BOTH SIDES ARE APPROX. EQUAL,

-THE CANDIDATE IS JUDGED TO BE OYER WATERP THUS A 'BRIDGE'
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COMMON /BC/IC(l28p8) ID( 1283)
CHARACTER*10 BRD
CHARACTER*9 FNAME
BRD='DRIDGE
PI=ATANC1.0)*4.
ANG=IC(NPP3)*PI/180#
DIST=(NW*2+2+IC(NPF5)/2#)
IXL=IC(NPP 1)-DIST*SIN(ANG)
IYL=IC(NPP2)-DIST*COS(ANG)
IXR=IC(NPP 1)+DIST*SIN(ANG)
IYR=IC(NPP2)+DIST*COS (ANG)
CALL TEX(LHIRFNAMEIXLvIYLPEIvVIvNWPBRD)k CALL TEX(LHIRvFNAMEPIXRvIYRPE2uV2vNWPBRD)
IF(BRD*EQ.'INCONCLUS.') GO TO 20
DM=ADS( (E1-E2)/2.)
IF(V1.GT.BT.OR.V2.OT.BT.OR.DM.GT.BT) ORD'INOT BRIDGE'

20 RETURN
END
SUBROUTINE TEX(LHPIRPFNAMEPIPKPEPYPNWPBRD)

* IMPLICIT INTEGER*2 (IJrKrLvMrN)
CHARACTER*10 BRD
CHARACTER*9 FNAME
DIMENSION IR(LH)

-THIS ROUTINE CALCULATES THE MEAN BRIGHTNESS AND UNIFORMITY
-(IEP STD.DEV.DR.BRIGWTNESS) WITHIN A NWXNW WINDOW CENTERED
-ON IPK* THIS 'TEXTURE' MEASURE IS USED IN THE GLOBCON TEST.

ErnO

OPEN(ACCESS='DIRECT' PNAME=FNAMEPTYPE='OLD' ,UNIT=21)
-THE NEXT LINE SEES IF THE POINT IS TOO CLOSE TO THE EDGE.

IFCK.LE.NW.OR.I.LE.NW.OR.I.GT.(LH-NU)) GO TO 10
WS-C 2*NW+ ) **2
DO 5 L=K-NWPK+NW
READ(21'LEND=1O) IR
DO 5 M=I-NWPI+NW
E=E+IR(M)

5 V=V+FLOAT(IR(M))**2
E=E/WS
V-SORT(V/WS -E**2)
GO TO 20

10 DRD-'INCONCLUS,'
20 CLOSE(UNIT-21)

RETURN
END
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